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Preface

This dissertation is devoted to study of the fractional functional and geometric
inequalities on homogeneous Lie groups. More precisely, we develop the fractional
calculus and non-commutative analysis, i.e., we combined two big direction in mathe-
matics. This perspective turned out to be extremely useful on both a conceptual and
a technical level. Namely, we will systematically employ the ideas of Prof. Michael
Ruzhansky, Assoc. Prof. Durvudkhan Suragan, Assoc. Prof. Berikbol Torebek, As-
soc. Prof. Niyaz Tokmagambetov, Dr. Nurgissa Yessirkegenov, Dr. Bolys Sabitbek
and others.

In Chapter 2, we give main definitions and preliminary results from [1], [2] and
open access books [3] and [4], which both received the “Ferran Sunyer i Balauguer
Award” in 2016 and 2019, respectively. Also, we give definition of the fractional
Sobolev space on homogeneous Lie groups and integer order of the Sobolev space on
graded, stratified Lie groups.

In Chapter 3, we develop theory of the fractional functional and geometric inequali-
ties on homogeneous Lie groups. We obtain the fractional Hardy, Sobolev, Gagliardo-
Nirenberg, Caffarelli-Kohn-Nirenberg inequalities on homogeneous Lie groups and its
logarithmic fractional inequalities which is even new on Euclidean case. For the Riesz
potential (or a fractional integral), we get the Hardy-Littlewood-Sobolev inequal-
ity on homogeneous Lie groups, which means boundedness of the Riesz operator in
Lq − Lp spaces. Also, we obtain the Stein-Weiss inequality (or a radially weighted
Hardy-Littlewood-Sobolev inequality) for the Riesz potential. In addition, we show
integer order logarithmic Sobolev-Folland-Stein inequality on stratified Lie groups.
This chapter is based on the papers [5], [6], [7] (joint works with M. Ruzhansky and
D. Suragan), [8], [9], [10] (joint works with D. Suragan) and [11] (joint work with A.
Kashkynbayev and D. Suragan).

In Chapter 4, we study a question of the reverse functional inequalities. Firstly, we
start to study reverse integral Hardy inequality on metric measure space. We note
that, in the work [12], authors introduced polar decomposition on metric measure
space, which is play a key role in their proof. In this chapter, we obtain reverse inte-
gral Hardy inequality on metric measure space with parameters q < 0 and p ∈ (0, 1).
As consequences, we get integral reverse Hardy inequality on on homogeneous Lie
groups, hyperbolic space and Cartan-Hadamard manifoldse with parameters q < 0
and p ∈ (0, 1) . Also, we show integral reverse Hardy inequality on metric measure
space with parameters∞ < q ≤ p < 0 and as a consequences we show reverse integral
Hardy inequality on homogeneous Lie groups. Then we obtain the reverse Hardy-
Littlewood-Sobolev, Stein-Weiss and improved Stein-Weiss inequalities on homoge-
neous Lie groups with parametres q < 0 and p ∈ (0, 1). Also, we obtain the reverse
Hardy-Littlewood-Sobolev, Stein-Weiss type and improved Stein-Weiss type inequal-
ities with parameters ∞ < q ≤ p < 0, which is even new in Euclidean settings. In
addition, we obtain the reverse Hardy, Lp-Sobolev and Lp- Caffarelli-Kohn-Nirenberg
inequalities with the radial derivative on homogeneous Lie groups. This chapter is
based on the papers [13], [14] (joint works with M. Ruzhansky and D. Suragan), [15]
(joint work with D. Suragan) and [16].

In Chapter 5, we give applications of the functional inequalities in PDE. Firstly, we
obtain Lyapunov inequalities for the fractional p-sub-Laplacian equation and systems



on homogeneous Lie groups. As a application of Lyapunov’s inequality, we give
lower estimate of the first eigenvalue of the fractional p-sub-Laplacian equation and
systems on homogeneous Lie groups. Then, we show existence of the weak solution
for the nonlinear equation with the p-sub-Laplacian on the Heisenberg and stratified
groups. Also, we show existence of the weak solution for the nonlinear equation with
the fractional sub-Laplacian and Hardy potential on homogeneous Lie groups and
multiplicity of the weak solution with first stratum Hardy potential on Heisenberg and
stratified groups. Then we discuss blow-up results for heat equation with fractional
sub-Laplacian and logarithmic nonlinearity on homogeneous Lie groups and for heat
equation with sub-Laplacian and logarithmic nonlinearity on stratified group. Also,
we show blow-up results for viscoelastic equations with sub-Laplacian on stratified
groups, heat and wave Rockland equations on graded groups. This chapter is based
on the papers [5], [7] (joint works with M. Ruzhansky and D. Suragan), [8], [9], [17],
[18] (joint works with D. Suragan), [11], [19] (joint works with A. Kashkynbayev and
D. Suragan), [20] (joint work with B. Torebek and N. Tokmagambetov), [21] (joint
work with B. Bekbolat and N. Tokmagambetov) and [22].

In Appendix, we consider one-dimensional functional inequalities on Euclidean
case. Firstly, we obtain fractional Hardy, Poincaré type, Gagliardo-Nirenberg type
and Caffarelli-Kohn-Nirenberg inequalities for the fractional order differential oper-
ators as Caputo, Riemann-Liouville and Hadamard fractional derivatives. Also, we
show applications of these inequalities. In addition, we show Lyapunov and Hartman-
Wintner-type inequalities for a fractional partial differential equation with Dirichlet
condition, we give an application of this inequalities for the first eigenvalue and we
show de La Vallée Poussin-type inequality for fractional elliptic boundary value prob-
lem. Appendix is based on the papers [23] (joint work with M. Ruzhansky, B. Torebek
and N. Tokmagambetov) and [24] (joint work with M. Kirane and B. Torebek).

Almaty, Ghent, April 2020 Aidyn Kassymov



Summary
In this PhD dissertation, we study functional and geometric inequalities on homo-

geneous Lie groups. For the direct inequalities we obtain fractional Hardy, Sobolev,
Hardy-Sobolev, Gagliardo-Nirenberg, Caffarelli-Kohn-Nirenberg, logarithmic inequal-
ities, Hardy-Littlewood-Sobolev and Stein-Weiss inequalities on homogeneous Lie
groups. Also, we obtain integer order Sobolev-Folland-Stein inequality on stratified
groups.

For the reverse inequalities, we prove reverse integral Hardy inequalities with pa-
rameters q < 0, p ∈ (0, 1) and −∞ < q ≤ p < 0. Also, we show reverse inte-
gral Hardy inequalities on homogeneous Lie groups, hypebolic space and Cartan-
Hadamard manifolds with q < 0, p ∈ (0, 1). As a consequences, we show reverse
Hardy-Littlewood-Sobolev, Stein-Weiss and improved version Stein-Weiss inequali-
ties for the cases q < 0, p ∈ (0, 1) and −∞ < q ≤ p < 0. In addition, we obtained
the reverse Hardy, Lp-Sobolev and Lp- Caffarelli-Kohn-Nirenberg inequalities with
the radial derivative on homogeneous Lie groups.

Then we show some applications of these inequalities in linear and nonlinear PDE
on homogeneous groups.

Also, we consider one-dimensional functional inequalities on Euclidean case. We
establish fractional Hardy, Poincaré type, Gagliardo-Nirenberg type and Caffarelli-
Kohn-Nirenberg inequalities for the fractional order differential operators as Caputo,
Riemann-Liouville and Hadamard fractional derivatives. Also, we show applications
of these inequalities. In addition, we show Lyapunov and Hartman-Wintner-type
inequalities for a fractional partial differential equation with Dirichlet condition, we
give an application of these inequalities for the first eigenvalue and we show de La
Vallée Poussin-type inequality for fractional elliptic boundary value problem.



Samenvatting
In dit proefschrift bestuderen we functionele en geometrische ongelijkheden bij ho-

mogene Lie-groepen. Voor de directe ongelijkheden verkrijgen we fractionele Hardy,
Sobolev, Hardy-Sobolev, Gagliardo-Nirenberg, Caffarelli-Kohn-Nirenberg, logaritmis-
che ongelijkheden, Hardy-Littlewood-Sobolev en Stein-Weiss ongelijkheden op ho-
mogene Lie-groepen. We verkrijgen ook een geheel aantal Sobolev-Folland-Stein-
ongelijkheid voor gelaagde groepen.

Voor de omgekeerde ongelijkheden, bewijzen we omgekeerde integrale Hardy on-
gelijkheden met parameters q < 0, p ∈ (0, 1) en −∞ < q ≤ p < 0. We tonen ook
omgekeerde integrale Hardy-ongelijkheden op homogene Lie-groepen, hyperbolische
ruimte en Cartan-Hadamard-spruitstukken met q < 0, p ∈ (0, 1). Als gevolg hiervan
tonen we omgekeerde Hardy-Littlewood-Sobolev, Stein-Weiss en verbeterde versie
Stein-Weiss ongelijkheden voor de gevallen q < 0, p ∈ (0, 1) en −∞ < q ≤ p < 0.
Bovendien verkrijgen we de omgekeerde Hardy, Lp - Sobolev en Lp - Caffarelli-Kohn-
Nirenberg ongelijkheden met de radiale derivaat op homogene Lie-groepen.

Vervolgens tonen we enkele toepassingen van deze ongelijkheden in lineaire en niet-
lineaire PDE op homogene groepen.

We hebben ook rekening gehouden met eendimensionale functionele ongelijkhe-
den in Euclidisch geval. We hebben fractionele Hardy, Poincaré type, Gagliardo-
Nirenberg en Caffarelli-Kohn-Nirenberg ongelijkheden vastgesteld voor de fractionele
orde differentiële operatoren als Caputo, Riemann-Liouville en Hadamard fractionele
derivaten. Ook tonen we toepassingen van deze ongelijkheden. Daarnaast tonen
we Lyapunov en Hartman-Wintner-type ongelijkheden voor een fractionele partiële
differentiaalvergelijking met Dirichlet-voorwaarde, geven we een toepassing van deze
ongelijkheden voor de eerste eigenwaarde en tonen we de La Vallé Poussin-type on-
gelijkheid voor probleem met fractionele elliptische grenswaarden.
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1. Introduction

The first mathematicians who study of subelliptic analysis on the Heisenberg group
were Folland and Stein in [25], who consistently created a generalisation of the anal-
ysis for more general stratified groups [26]. And it can also be noted that Rothschild
and Stein generalised these results for general vector fields satisfying the Hörmander’s
condition. We can say that these results were published in the famous book by Fol-
land and Stein [1] which laid the anisotropic analysis. And it is worth noting that
homogeneous Lie group is nilpotent.

The history of fractional calculus originates from the works of Riemann and Liou-
ville. And in these works, the concepts of the fractional integral were introduced for
the first time. Along with integer derivatives, the concept of a fractional derivative
was introduced, which was named after Riemann and Liouville. Then, Hadamard
in his works, he introduced a different definition of the fractional derivative. And
it is also worth noting that Caputo also introduced the definition of a fractional de-
rivative that in a particular case can be equal to the Riemann-Liouville derivative.
These operators are non-local operators. Note that these fractional derivatives are
one-dimensional operators. For the multidimensional case, the concept of a multi-
dimensional fractional Laplacian is introduced via Laplacian’s symbol. It is worth
noting that fractional calculus is currently a rapidly developing mathematical field.
The main aim of this dissertation is to combine non-commutative analysis on groups
and fractional calculus.

Nowadays, functional and geometric inequalities on Lie groups are currently a
rapidly developing field of mathematics. Many nonlinear differential equations of
problems of mechanics and problems of physics to which the global solvability of
problems is proved through functional inequalities. It means, one of the most im-
portant tool to study PDE is the functional inequalities. For example, integer order
multi-dimensional Hardy inequality demonstrates the following inequality:∫

Rn

|u(x)|p

|x|p
dx ≤

(
p

n− p

)p ∫
Rn
|∇u(x)|pdx, 1 < p < n, ∀u ∈ C∞0 (Rn), (1.1)

where | · | is the Euclidean distance and constant
(

p
n−p

)p
is a sharp. This inequality

has applications in a lot of areas of mathematics, for example in spectral theory. Also,
by this inequality we can show Heisenberg-Pauli uncertainly principle, which has ap-
plication in quantum theory. Firstly, on group settings Hardy inequality was obtained
by Garofalo and Lanconelli on Heisenberg group in [27]. On stratified groups, Hardy
inequality were obtained in the works [28], [29] and [30], on homogeneous groups
was obtianed in [31] and on graded groups in [32]. In [33] the authors studied the
fractional p-Laplacian and established the following fractional Lp-Hardy inequality

C

∫
RN

|u(x)|p

|x|ps
dx ≤

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy, (1.2)

where u ∈ C∞0 (RN) and C > 0 is a positive constant. Also, best constant was
obtained in [33]. Generelasation of this inequality was obtained in [34].

Classical Sobolev inequality (or a continuous Sobolev embedding) is the one of the
most popular functional inequality. Sobolev inequality has a lot of applications in
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PDE and variational principles. Let Ω ⊂ RN be a measurable set and 1 < p < N ,
then the (classical) Sobolev inequality is formulated as

‖u‖Lp∗ (Ω) ≤ C‖∇u‖Lp(Ω), u ∈ C∞0 (Ω), (1.3)

where C = C(N, p) > 0 is a positive constant, p∗ = Np
N−p and ∇ is a standard gradient

in RN (see e.g., [35]). Logarithmic Sobolev inequality was proverd in [36] and it has
the following form:∫

RN

|u|p

‖u‖p
Lp(RN )

log

(
|u|p

‖u‖p
Lp(RN )

)
dx ≤ N

p
log

(
C
‖∇u‖p

Lp(RN )

‖u‖p
Lp(RN )

)
, 1 ≤ p <∞, (1.4)

where u,∇u ∈ Lp(RN). On Heisenberg groups case Sobolev inequality inequality was
obtained by Folland and Stein, on stratified groups by Garofalo and Vassilev in [37],
on graded groups by Fischer and Ruzhansky in [3]. Also, the best constant of the
Sobolev inequality for general hypoelliptic (Rockland operators) on general graded
Lie groups was obtained in [38]. For the fractional order Sobolev’s inequality was
obtained in [39] in the case N > sp, 1 < p < ∞, and s ∈ (0, 1), for any measurable
and compactly supported function u one has

‖u‖Lp∗ (RN ) ≤ C[u]s,p, (1.5)

where C = C(N, p, s) > 0 is a suitable constant, [u]ps,p =
∫
RN
∫
RN
|u(x)−u(y)|p
|x−y|N+sp dxdy and

p∗ = Np
N−sp . There is a number of generalisations and extensions of above Sobolev’s

inequality. For example, in [34] the authors proved the following weighted fractional
Sobolev inequality: Let 1 < p < N

s
and 0 < β < N−ps

2
, then for all u ∈ C∞0 (RN) one

has

C

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps|x|β|y|β
dxdy ≥

(∫
RN

|u|p∗

|x|
2βp∗
p

dx

) p
p∗

, (1.6)

where C = C(N, p, s) > 0 and p∗ = Np
N−sp .

E. Gagliardo and L. Nirenberg independently, obtained following (interpolation)
inequality

‖u‖p
Lp(RN )

≤ C‖∇u‖N(p−2)/2

L2(RN )
‖u‖(2p−N(p−2))/2

L2(RN )
, u ∈ H1(RN), (1.7)

where {
2 ≤ p ≤ ∞ for N = 2,

2 ≤ p ≤ 2N
N−2

for N > 2.

In particular case, from this inequality we can obtain Sobolev inequality. In addition,
the logarithmic Gagliardo-Nirenberg inequality was proved in [36] and its fractional
version was proved in [40]. On Heisenberg group, the Gagliardo-Nirenberg inequality
has the following form

‖u‖pLp(Hn) ≤ C‖∇Hnu‖Q(p−2)/2

L2(Hn) ‖u‖
(2p−Q(p−2))/2

L2(Hn) , (1.8)

where ∇H is a horizontal gradient and Q is a homogeneous dimension of Hn. Also, in
[38] authors obtained Gagliardo-Nirenberg inequality and its the best constants on
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general hypoelliptic (Rockland operators) on general graded Lie groups. Fractional
version of the Gagliardo-Nirenberg was established in [41]:

‖u‖Lτ (RN ) ≤ C[u]as,p‖u‖1−a
Lα(RN )

, ∀u ∈ C1
c (RN), (1.9)

for N ≥ 1, s ∈ (0, 1), p > 1, α ≥ 1, τ > 0, and a ∈ (0, 1] is such that

1

τ
= a

(
1

p
− s

N

)
+

1− a
α

.

In the fundamental work of the L. Caffarelli, R. Kohn and L. Nirenberg in [42],
they obtained:

Theorem 1.1. Let N ≥ 1, and let l1, l2, l3, a, b, d, δ ∈ R be such that l1, l2 ≥ 1,
l3 > 0, 0 ≤ δ ≤ 1, and

1

l1
+
a

N
,

1

l2
+

b

N
,

1

l3
+
δd+ (1− δ)b

N
> 0. (1.10)

Then,

‖|x|δd+(1−δ)bu‖Ll3 (RN ) ≤ C‖|x|a∇u‖δLl1 (RN )‖|x|
bu‖1−δ

Ll2 (RN )
, u ∈ C∞c (RN), (1.11)

if and only if

1

l3
+
δd+ (1− δ)b

N
= δ

(
1

l1
+
a− 1

N

)
+ (1− δ)

(
1

l2
+

b

N

)
,

a− d ≥ 0, if δ > 0,

a− d ≤ 1, if δ > 0 and
1

l3
+
δd+ (1− δ)b

N
=

1

l1
+
a− 1

N
, (1.12)

where C is a positive constant independent of u.

The logarithmic analogue of the Caffarelli-Kohn-Nirenberg inequality was proved in
[43]. Recently many different versions of Caffarelli-Kohn-Nirenberg inequalities have
been obtained, namely, in [44] on the Heisenberg groups, in [45] and [29] on strati-
fied groups, in [46] on (general) homogeneous Lie groups. In [41] the authors proved
the fractional analogues of the Caffarelli-Kohn-Nirenberg inequality in weighted frac-
tional Sobolev spaces. Also, a fractional Caffarelli-Kohn-Nirenberg inequality for an
admissible weight in RN was obtained in [34].

One of the pioneering work of Hardy and Littlewood in [47], they considered the
1D fractional integral operator on (0,∞) given by

Tλu(x) =

∫ ∞
0

u(y)

|x− y|λ
dy, 0 < λ < 1, (1.13)

and proved the following theorem:

Theorem 1.2. Let 1 < p < q <∞ and u ∈ Lp(0,∞) with 1
q

= 1
p

+ λ− 1, then

‖Tλu‖Lq(0,∞) ≤ C‖u‖Lp(0,∞), (1.14)

where C is a positive constant independent of u.
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The multi-dimensional analogue of (1.13) can be written by the formula:

Iλu(x) =

∫
RN

u(y)

|x− y|λ
dy, 0 < λ < N. (1.15)

The multi-dimensional case of Theorem 1.2 was extended by Sobolev in [48]:

Theorem 1.3. Let 1 < p < q <∞, u ∈ Lp(RN) with 1
q

= 1
p

+ λ
N
− 1, then

‖Iλu‖Lq(RN ) ≤ C‖u‖Lp(RN ), (1.16)

where C is a positive constant independent of u.

Then, in [49] Stein and Weiss obtained the radially weghted extention of the Hardy-
Littlewood-Sobolev inequality, which is known as the Stein-Weiss inequality.

Theorem 1.4. Let 0 < λ < N , 1 < p < ∞, α < N(p−1)
p

, β < N
q

, α + β ≥ 0 and
1
q

= 1
p

+ λ+α+β
N
− 1. If 1 < p ≤ q <∞, then

‖|x|−βIλu‖Lq(RN ) ≤ C‖|x|αu‖Lp(RN ), (1.17)

where C is a positive constant independent of u.

On the Heisenberg group, the Hardy-Littlewood-Sobolev inequality was proved by
Folland and Stein in [25] and an analogue of Stein-Weiss inequality was proved in
[50]. In [51] the authors studied the Stein-Weiss inequality on the Carnot groups.
We also note that the best constant in the Hardy-Littlewood-Sobolev inequality on
the Heisenberg group is now known (see Frank and Lieb [52]) and in the Euclidean
case this was done earlier by Lieb in [53].

The reverse Stein-Weiss inequality in Euclidean setting has the following form:

Theorem 1.5 ([54], Theorem 1). For n ≥ 1, p ∈ (0, 1), q < 0, λ > 0, 0 ≤ α < −n
q
, and

0 ≤ β < − n
p′

satisfying 1
p
+ 1
q′
− α+β+λ

n
= 2, there is a constant C = C(n, α, β, λ, p, q) >

0 such that for any non-negative functions f ∈ Lq′(Rn) and 0 <
∫
Rn g

p(y)dy <∞,∫
Rn

∫
Rn
|x|α|x− y|λf(x)g(y)|y|βdydx ≥ C

(∫
Rn
f q
′
(x)dx

) 1
q′
(∫

Rn
gp(y)dy

) 1
p

,

(1.18)
where 1

q
+ 1

q′
= 1 and 1

p
+ 1

p′
= 1.

The inequality (1.18) is equivalent to,(∫
Rn
|x|αq

(∫
Rn
|x− y|λ|y|βg(y)dy

)q
dx

) 1
q

≥ C

(∫
Rn
gp(y)dy

) 1
p

. (1.19)

From last, if α = β = 0 we obtain the reverse Hardy-Littlewood-Sobolev inequality.
Improved Stein-Weiss inequality was obtained in [55] on Euclidean upper half-space.
For more results about the reverse Hardy–Littlewood–Sobolev inequality in Euclidean
space, we refer the reader to [56] [57], [58], [59] and the references therein.

By summarising above facts, in this dissertation we developed direct and reverse in-
equalities on homogeneous groups. In Chapter 3, we obtain fractional Hardy, Sobolev,
Gagliardo-Nirenberg, Caffarelli-Kohn-Nirenberg inequalities on homogeneous Lie groups
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and its logarithmic fractional inequalities. For the Riesz potential (or a fractional in-
tegral), we get the Hardy-Littlewood-Sobolev inequality on homogeneous Lie groups,
which means boundedness of the Riesz operator in Lq − Lp spaces. Also, we obtain
the Stein-Weiss inequality for the Riesz potential. In addition, we show integer order
logarithmic Sobolev-Folland-Stein inequality on stratified Lie groups.

In Chapter 4, we prove reverse integral Hardy inequality on metric measure space
with q < 0 and p ∈ (0, 1) and ∞ < q ≤ p < 0, integral reverse Hardy inequality
on homogeneous Lie groups, hyperbolic space and Cartan-Hadamard manifolds. As
consequences we show Hardy-Littlewood-Sobolev, Stein-Weiss and improved Stein-
Weiss inequalities on homogeneous Lie groups with parametres q < 0, p ∈ (0, 1) and
∞ < q ≤ p < 0. In addition, we obtain the reverse Hardy, Lp-Sobolev and Lp-
Caffarelli-Kohn-Nirenberg inequalities with the radial derivative on homogeneous Lie
groups.

In Chapter 5, we give applications of the functional inequalities to PDE. Firstly, we
obtain Lyapunov inequalities for the fractional p-sub-Laplacian equation and systems
on homogeneous Lie groups. Then, we show the existence of the weak solution for
the nonlinear equation with the p-sub-Laplacian on the Heisenberg and stratified
groups and we show the existence of the weak solution for the nonlinear equation
with the fractional sub-Laplacian and Hardy potential on homogeneous Lie groups.
Then we discuss blow-up results for heat equation with fractional sub-Laplacian and
logarithmic nonlinearity on homogeneous Lie groups, for heat equation with sub-
Laplacian and logarithmic nonlinearity on stratified groups, viscoelastic equation on
stratified groups, heat and wave Rockland equations on graded groups. We give
introduction in every section of this chapter.

In Appendix, we consider one-dimensional functional inequalities on Euclidean
case. Firstly, we obtain fractional Hardy, Poincaré type, Gagliardo-Nirenberg and
Caffarelli-Kohn-Nirenberg inequalities for the fractional order differential operators
as Caputo, Riemann-Liouville and Hadamard fractional derivatives. Also, we show
applications of these inequalities. In addition, we show Lyapunov and Hartman-
Wintner-type inequalities for a fractional partial differential equation with Dirichlet
condition, we give an application of this inequalities for the first eigenvalue and
we show de La Vallée Poussin-type inequality for fractional elliptic boundary value
problem.

I want to note with pleasure, some of the results of this dissertation were included
in the monograph of Prof. M.Ruzhansky and Assoc.Prof. D.Suragan, which received
the award. Basic results of this dissertation were published in the following journals:

• A. Kassymov, M. Ruzhansky and D. Suragan. Fractional logarithmic in-
equalities and blow-up results with logarithmic nonlinearity on homogeneous
groups. Nonlinear Differ. Equ. Appl., 27:7, 2020. (Scopus, Web of Science,
Q1);
• A. Kassymov, M. Ruzhansky and D. Suragan. Hardy-Littlewood-Sobolev

and Stein-Weiss inequalities on homogeneous Lie groups. Integral Transform.
Spec. Funct., 30(8):643–655, 2019. (Scopus, Web of Science, Q2);
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• A. Kassymov and D. Suragan. Existence of solutions for p-sub-Laplacians
with nonlinear sources on the Heisenberg group. Complex Variables and El-
liptic Equations, dx.doi:10.1080/17476933.2020.1731737, 2020. (Scopus, Web
of Science, Q2);
• A. Kassymov, B. Torebek and N. Tokmagambetov. Nonexistence Results

for the Hyperbolic-Type Equations on Graded Lie Groups. Bulletin of the
Malaysian Mathematical Sciences Society, doi:10.1007/s40840-020-00919-6, 2020,
(Scopus, Web of Science, Q2);
• Bekbolat B., Kassymov A., Tokmagambetov N. Blow-up of Solutions of Non-

linear Heat Equation with Hypoelliptic Operators on Graded Lie Groups.
Complex Analysis and Operator Theory, 13(7):3347-3357, 2019. (Scopus, Web
of Science, Q2);
• A. Kassymov and D. Suragan. Fractional Hardy-Sobolev inequalities and ex-

istence results for frational sub-Laplacians. Journal of Mathematical Sciences,
to appear. (Scopus, Q3);
• A. Kassymov and D. Suragan. Lyapunov-type inequalities for the fractional
p-sub-Laplacian. Advances in Operator Theory, 1-18, doi:10.1007/s43036-019-
00037-6, 2020. (Scopus, Web of Science);
• A. Kassymov and Suragan D. An analogue of the fractional Sobolev in-

equality on the homogenous Lie groups. Mathematical Journal, 18(1):99-110,
2018.(Kazakh local journal);
• A. Kassymov and Suragan D. Reversed Hardy–Littlewood–Sobolev inequal-
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• A. Kassymov. Blow-up of solutions for nonlinear pseudo-parabolic Rockland

equation on graded Lie groups. Kazakh Mathematical Journal, 19(3):89-100,
2019.(Kazakh local journal).
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2. Preliminaries

In this chapter, we briefly give definitions, main properties and theorems of the
homogeneous, graded, stratified Lie groups and Heisenberg groups. Also, we will fix
the main notations in this dissertation. All main definitions were taken from [1], [2]
and open access books [3] and [4].

2.1. Homogeneous Lie groups. In whole of this dissertations, any Lie algebra g
is assumed to be real and finite dimensional. The lower central series of g is defined
inductively by

g(1) := g, g(j) := [g, g(j−1)],

terminates at 0 in a finite number of steps. If the lower central series of the Lie
algebra g terminates at 0 in a finite number of steps, then this Lie algebra is called
nilpotent. Then, if g(s+1) = {0} and g(s) 6= {0}, then g is said to be nilpotent of step
s. A Lie groups G is nilpotent (of step s) whenever its Lie algebra is nilpotent (of
step s). If exp : g → G is the exponential map, by the Campbell-Hausdorff formula
for X, Y ∈ G sufficiently close to 0 we have

expX expY = expH(X, Y ), (2.1)

where H(X, Y ) is the Campbell-Hausdorff series which is an infinite linear combina-
tion of X and X and their iterated commutators and H is universal, i.e. independent
of g, and that

H(X, Y ) = X + Y +
1

2
[X, Y ] + . . . , (2.2)

where the dots indicate terms of order ≥ 3. If g is nilpotent, the Campbell-Hausdorff
series terminates after finitely many terms and defines a polynomial map from V ×V
to V , where V is the underlying vector space of g. Let us give the following property
about Haar measure (see e.g., [3] and [4]).

Proposition 2.1 ([4, Proposition 1.1.1], [3, Proposition 1.6.6] and [1, Proposition
1.2]). Let G be a connected and simply-connected nilpotent Lie group with Lie algebra
g. Then if µ denotes a Lebesgue measure on g, then µ ◦ exp−1 is a bi-invariant Haar
measure on G.

From [3] and [4], a family of dilations of a Lie algebra g is a family of linear
mappings of the form

Dλ = Exp(A lnλ) =
∞∑
k=0

(ln(λ)A)k, (2.3)

where A is a diagonalisable linear operator on g with positive eigenvalues, and Dλ

is a morphism of the Lie algebra g, that is, a linear mapping from g to itself which
respects to the Lie bracket:

∀X, Y ∈ g, λ > 0, [DλX,DλY ] = Dλ[X, Y ]. (2.4)

Let us give definition of the homogeneous Lie groups, (see e.g., [4, Definition 1.1.6]
and [3, Definition 3.1.7]):
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Definition 2.2 (Homogeneous Lie group). A homogeneous (Lie) group is a connected
simply connected Lie group whose Lie algebra is equipped with dilations.

Also, we have another definition of homogeneous Lie group (see [2]):

Definition 2.3 (Homogeneous Lie group). A Lie group (on RN) G with the dilation

Dλ(x) := (λν1x1, . . . , λ
νNxN), ν1, . . . , νn > 0, Dλ : RN → RN ,

which is an automorphism of the group G for each λ > 0, is called a homogeneous
(Lie) group.

For simplicity, in this dissertation we use the notation λx for the dilation Dλ. We
denote

Q := ν1 + . . .+ νN , (2.5)

the homogeneous dimension of a homogeneous group G. Let dx denote the Haar
measure on G and let |S| denote the corresponding volume of a measurable set S ⊂ G.
Then we have

|Dλ(S)| = λQ|S| and

∫
G
f(λx)dx = λ−Q

∫
G
f(x)dx. (2.6)

Then we have the following widely use proposition in our dissertation.

Proposition 2.4 ([4, p. 19]). Let G be a homogeneous Lie group with homogeneous
dimension Q, r > 0 and dx be a Haar measure. Then, we have

d(rx) = rQdx.

Definition 2.5 ([4, Definition 1.2.1]). For any homogeneous group G there exists
homogeneous quasi-norm, which is a continuous non-negative function

G 3 x 7→ |x| ∈ [0,∞), (2.7)

with the properties

a) |x| = |x−1| for all x ∈ G,
b) |λx| = λ|x| for all x ∈ G and λ > 0,
c) |x| = 0 iff x = 0.

Let us define quasi-ball centered at x with radius r in the following form:

B(x, r) := {x ∈ G : |x−1y| < r}. (2.8)

Then we have the following proposition about triangle inequality of the quasi-norm,
which is widely use in our proofs.

Proposition 2.6 ([4, Proposition 1.2.4]). Let G be a homogeneous Lie group. Then
there exists a homogeneous quasi-norm on G which is a norm, that is, a homogeneous
quasi-norm | · | which satisfies the triangle inequality

|xy| ≤ |x|+ |y|, ∀x, y ∈ G. (2.9)

Furthermore, all homogeneous quasi-norms on G are equivalent.

Also, let us also recall a well-known fact about quasi-norms.
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Proposition 2.7 ([3], Proposition 3.1.38 and [4], Proposition 1.2.4). If | · | is a
homogeneous quasi-norm on G, there exists C > 0 such that for every x, y ∈ G, we
have

|xy| ≤ C(|x|+ |y|). (2.10)

Moreover, the following polarisation formula on homogeneous Lie groups will be
used in our proofs.

Proposition 2.8 ([4, Proposition 1.2.10] and [3, Proposition 3.1.42]). Let G be a
homogeneous Lie group and S := {x ∈ G : |x| = 1}, be the unit sphere with respect
to the homogeneous quasi-norm | · |. Then there is a unique Radon measure σ on S
such that for all f ∈ L1(G), we have∫

G
f(x)dx =

∫ ∞
0

∫
S

f(ry)rQ−1dσ(y)dr. (2.11)

Let us give main definitions of the fractional Sobolev space on homogeneous Lie
groups. Assume that p ≥ 1 and for any measurable function u : G→ R we define fol-
lowing quasi-seminorm which is called the Gagliardo quasi-seminorm in the following
form

[u]s,p :=

(∫
G

∫
G

|u(x)− u(y)|p

|y−1x|Q+sp
dxdy

) 1
p

, s ∈ (0, 1), Q > 1, (2.12)

where | · | is a quasi-norm which is defined in Definition 2.5. By W s,p(G) we call
the fractional Sobolev spaces on homogeneous groups. For p ≥ 1 and s ∈ (0, 1), the
functional space

W s,p(G) = {u : u ∈ Lp(G), [u]s,p < +∞}, (2.13)

is called the fractional Sobolev space on G.
If Ω ⊂ G is a Haar measurable set, we define the Sobolev space

W s,p(Ω) = {u : u ∈ Lp(Ω), [u]s,p,Ω =

(∫
Ω

∫
Ω

|u(x)− u(y)|p

|y−1x|Q+sp
dxdy

) 1
p

< +∞}. (2.14)

Let us define W s,p
0 (Ω) as the completion of C∞0 (Ω) with respect to the norm

‖u‖W s,p
0 (Ω) = [u]s,p,Ω. (2.15)

Let us define weighted fractional Sobolev space on homogeneous Lie groups in the
following form

W s,p,β(G) = {u : u ∈ Lp(G),

[u]s,p,β =

(∫
G

∫
G

|x|β1p|y|β2p|u(x)− u(y)|p

|y−1x|Q+sp
dxdy

) 1
p

< +∞}, (2.16)

where β1, β2 ∈ R with β = β1 + β2, that is, it depends on β1 and β2.
As above, for a Haar measurable set Ω ⊂ G , p ≥ 1, s ∈ (0, 1) and β1, β2 ∈ R with

β = β1 + β2, we define the weighted fractional Sobolev space

W s,p,β(Ω) = {u : u ∈ Lp(Ω),

[u]s,p,β,Ω =

(∫
Ω

∫
Ω

|x|β1p|y|β2p|u(x)− u(y)|p

|y−1x|Q+sp
dxdy

) 1
p

< +∞}. (2.17)
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Obviously, taking β = β1 = β2 = 0 in (2.17), we recover (2.14).
Then, let us give main definition of the fractional p-sub-Lapalcian. For a (Haar)

measurable and compactly supported function u the fractional p-sub-Laplacian (−∆p)
s

on G can be defined as

(−∆p)
su(x) = 2 lim

δ↘0

∫
G\B(x,δ)

|u(x)− u(y)|p−2(u(x)− u(y))

|y−1x|Q+sp
dy, x ∈ G, (2.18)

where | · | is a quasi-norm on G and B(x, δ) is a quasi-ball with respect to | · |, with
radius δ centered at x ∈ G. If p = 2, then we have (−∆2)s = (−∆s).

If p > 1, for all ϕ ∈ W s,p
0 (Ω), we have

〈(−∆p)
su, ϕ〉 :=

∫
Ω

∫
Ω

|u(x)− u(y)|p−2(u(x)− u(y))(ϕ(x)− ϕ(y))

|y−1x|Q+sp
dxdy. (2.19)

2.2. Graded Lie group. In this section, we present a brief summary of the basic
definitions and properties of the graded Lie groups.

Definition 2.9 (Graded Lie group and graded Lie algebra (see e.g., [4, Definition
1.1.4] and [3, Definition 3.1.1])). A Lie algebra g is called graded if it is endowed with
a vector space decomposition (where all but finitely many of the Vj’s are 0)

g = ⊕∞j=1Vj, s.t. [Vi, Vj] ⊂ Vi+j. (2.20)

Consequently, a Lie group is called graded if it is a connected and simply-connected
Lie group whose Lie algebra is graded.

Before defining the Rockland operator, let us define Rockland condition. By π and

Ĝ we define representation and unitary dual of G, respectively and by H∞π we define

the smooth vectors of representation π ∈ Ĝ. Let us give definition of the Rockland
condition (see [3, Definition 4.1.1]):

Definition 2.10 (Rockland condition). Let A be a left-invariant differential operator
on a Lie group G. Then A satisfies the Rockland condition when

(Rockland condition) for each representation π ∈ Ĝ, except for the trivial repre-
sentation, the operator π(A) is injective on H∞π , that is,

∀v ∈ H∞π , π(A)v = 0⇒ v = 0. (2.21)

Then let us give Rockland operator on homogeneous Lie groups G (see e.g., [3,
Definition 4.1.2]).

Definition 2.11 (Rockland operator). Let G be a homogeneous Lie group. A Rock-
land operator R on G is a left-invariant differential operator which is homogeneous
of positive degree and satisfies the Rockland condition.

Then let us give proposition which connected homogeneous Lie groups and Rock-
land operators.

Proposition 2.12 ([3, Proposition 4.1.3]). Let G be a homogeneous Lie group. If
there exists a Rockland operator on G then the G is a graded.

Then let us give some example for the Rockland operator on graded Lie group.
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Lemma 2.13 ([3, Lemma 4.1.8]). Let G be a graded Lie group on Rn. We denote
by {Dr}r>0 the natural family of dilations on its Lie algebra g, and by v1, ..., vn its
weights. We fix a basis {X1, ..., Xn} of g satisfying

DrXj = rvjXj, j = 1, . . . , n, r > 0.

If ν0 is any common multiple of v1, . . . , vn, the operator

n∑
j=1

(−1)
ν0
vj cjX

2
ν0
vj

j , cj = const, (2.22)

is a Rockland operator of homogeneous degree 2ν0.

By combining Proposition 2.12 and Lemma 2.13, we have that the in homogeneous
Lie group G, if there exists Rockland operator in the form (2.22) as in Lemma 2.13,
then G is a graded. In the Chapter 5, we will widely use Rockland operator as in
Lemma 2.13. Let us give definition of fractional power of the Rockland operator (see,
[3, Definition 4.3.1]).

Definition 2.14. Let R be a positive Rockland operator on a graded Lie group G.
For p ∈ [1,∞), we denote by Rp the operator such that −Rp is the infinitesimal
generator of the semi-group of operators f 7→ f ∗ ht, t > 0, on Lp(G).

Then let us give a definition of the Sobolev space on graded Lie groups. Assume
that R be a positive Rockland with homogeneous degree ν and Rp fractional power of
R on graded Lie group G, which is defined in Definitions 2.11 and 2.14, respectively.

Definition 2.15 (Inhomogeneous Sobolev space ([3, Definition 4.2.2])). Let R be a
positive Rockland operator on a graded Lie group G and s ∈ R. If p ∈ [1,∞), the
Sobolev space Lps(G) is the subspace of S ′(G) obtained by completion of S(G) with
respect to the Sobolev norm

‖f‖Lps(G) := ‖(I +Rp)
s
ν f‖Lp(G), ∀f ∈ S(G).

Let us give definition of the homogeneous Sobolev space on graded Lie groups.

Definition 2.16 ([3, Definition 4.4.12]). Let R be a Rockland operator of homoge-
neous degree ν on a graded Lie group G, and let p ∈ (1,∞). We denote by L̇ps(G)

the space of tempered distribution obtained by the completion of S(G) ∩Dom(R
s
ν
p )

for the norm

‖f‖L̇ps(G) := ‖R
s
ν
p f‖Lp(G), ∀f ∈ S(G) ∩Dom(R

s
ν
p ).

Then let us give the following theorem about the independence of the spaces Lps(G)
and L̇ps(G) of a particular choice of the Rockland operator R.

Theorem 2.17 ([3, Theorem 4.4.20]). Let G be a graded Lie group and p ∈ (1,∞).
The homogeneous Lp−Sobolev spaces on G associated with any positive Rockland
operators coincide. The inhomogeneous Lp−Sobolev spaces on G associated with any
positive Rockland operators coincide.
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Then by using last theorem, norms of the inhomogeneous and homogeneous Sobolev
spaces on graded Lie groups, respectively have the following forms:

‖f‖Lps(G) =

(∫
G
|R

s
ν f |pdx+

∫
G
|f |pdx

) 1
p

, (2.23)

and

‖f‖L̇ps(G) =

(∫
G
|R

s
ν f |pdx

) 1
p

. (2.24)

In this disseratation, we can use any of the notation of the Sobolev space on graded
Lie groups Lps(G) = Hs(G).

2.3. Stratified Lie group. In this section, we give definitions of stratified group
(homogeneous Carnot group) and basic propositions. Let us briefly recall the defini-
tion of the stratified Lie group. We refer [2], [3] and [4] for further discussions in this
direction.

Definition 2.18. A Lie group G = (Rn, ◦) is called a stratified Lie group if it satisfies
the following assumptions:

(a) For some natural numbers n1+...+nr = n the decomposition Rn = Rn1×...×Rnr

is valid, and for every λ > 0 the dilation δλ : Rn → Rn given by

δλ(x) ≡ δλ(x
(1), ..., x(r)) := (λx(1), ..., λrx(r))

is an automorphism of the group G. Here x(k) ∈ Rnk for k = 1, ..., r.
(b) Let n1 be as in (a) and let X1, ..., Xn1 be the left invariant vector fields on G

such that Xk(0) = ∂
∂xk
|0 for k = 1, ..., n1. Then

rank(Lie{X1, ..., Xn1}) = n,

for every x ∈ Rn, i.e. the iterated commutators of X1, ..., Xn1 span the Lie algebra of
G.

Also, by [3] and [4] we have the following definition of the stratified Lie group:

Definition 2.19. A graded Lie algebra g is called stratified if V1 generates g as an
algebra. In this case, if g is nilpotent of step m we have

g = ⊕∞j=1Vj, s.t. [Vi, V1] ⊂ Vi+1, (2.25)

and the natural dilations g are given by

Dr

(
m∑
k=1

Xk

)
=

m∑
k=1

rkXk, (Xk ∈ Vk). (2.26)

Consequently, a Lie group is called stratified if it is connected and simply-connected
Lie group whose Lie algebra is stratified.

As in homogeneous groups, by dx we understand Haar measure on stratified Lie
group G.

Then let us give as example of the stratified Lie groups which is called the Heisen-
berg group. Let us briefly give the definition of the Heisenberg group. By Hn :=
(R2n+1, ◦), we define Heisenberg group with group law:

ξ̃◦ξ′ = (x̃+x′, ỹ+y′, t+t′+2(x′ỹ−x̃y′)), ∀ξ = (x̃, ỹ, t) and ∀ξ′ = (x′, y′, t′), (2.27)
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where ξ̃ = (x̃, ỹ, t) ∈ R2n+1 with x̃ ∈ Rn, ỹ ∈ Rn and t ∈ R. The family of dilations
has the following form

δλ(ξ̃) := (λx̃, λỹ, λ2t), ∀λ > 0. (2.28)

Then, homogeneous dimension of Hn is Q = 2n+ 2 and the topological dimension is
2n+ 1. The Lie algebra g of the left-invariant vector fields on the Heisenberg group
Hn is spanned by

Xi = ∂i + 2ỹi∂t, i = 1, . . . , n,

Yi = ∂n+i − 2x̃i∂t, i = 1, . . . , n,

with their non-zero commutator

[Xi, Yi] = −4∂t.

Let us define Sobolev space on stratified Lie groups. By the notation

∇G := (X1, . . . , XN1)

we called (horizontal) gradient. Let Ω be an open subset G. Let us consider Sobolev
space

S1,p(Ω) := {u : u ∈ Lp(Ω), |∇Gu| ∈ Lp(Ω), p ≥ 1}, (2.29)

supplemented with the norm

‖u‖S1,p(Ω) :=

(∫
Ω

|u|p + |∇Gu|pdx
) 1

p

.

Then, we define the functional class S1,p
0 (Ω) to be the completion of C1

0(Ω) in the
norm

‖u‖S1,p
0 (Ω) :=

(∫
Ω

|∇Gu|pdx
) 1

p

.

So, the sub-Laplacian on stratified groups is given by

∆G := ∇G · ∇G,

and the p-sub-Laplacian is given by

Lp := ∇G · (|∇G|p−2∇G).

On Heisenberg group, the sub-Laplacian is given by

∆H := ∇H · ∇H ,

where ∇H = (X1, . . . , Yn), and the p-sub-Laplacian is given by

∆H,p := ∇H · (|∇H |p−2∇H). (2.30)

For simplicity, throughout this dissertation we use any of the notation ∇H and ∇Hn

for the horizontal gradient and for the sub-Laplacian we use any of the notation ∆H

and ∆Hn . It is well known that the class of the Heisenberg group is a subclass of the
stratified Lie groups, that is, obviously, the above definition is valid for the Heisenberg
group setting.
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2.4. Metric measure space, Hyperbolic space and Cartan-Hadamard man-
ifolds. Let us introduce, main definitions of the metric measure space, hyperbolic
and Cartan-Hadamard manifolds. Definitions of this sections will widely use in the
Chapter 4.

Definition 2.20 ([12]). Let (X, d) be a metric space where d is a metric and dx be
a Borel measure. Then this triple (X, d, dx) is called metric measure space.

By [12], let us consider (X, d, dx) metric measure space allowing for the following
polar decomposition at a ∈ X: we assume that there is a locally integrable function
λ ∈ L1

loc such that for all f ∈ L1(X) we have∫
X
f(x)dx =

∫ ∞
0

∫
Σr

f(r, ω)λ(r, ω)dωdr, (2.31)

for the set Σr = {x ∈ X : d(x, a) = r} ⊂ X with a measure on it denoted by dω, and
(r, ω) → a as r → 0. This polar decomposition will play a key role in the proof of
our results in Chapter 4.

Let us give definition of the hyperbolic space.

Definition 2.21. The hyperbolic space Hn (n ≥ 2) is a complete and simply con-
nected Riemannian manifold having constant sectional curvature equal to −1.

Let us denote that by d(0, x) the hyperbolic distance in the ball model between the

origin and x in the following form: d(0, x) = ln 1+|x|
1−|x| . So then let us give definition of

the Cartan-Hadamard manifolds:

Definition 2.22 ([12]). Let KM be the sectional curvature on (M, g). A Riemannian
manifold (M, g) is called a Cartan-Hadamard manifold if it is complete, simply con-
nected and has non-positive sectional curvature, i.e., the sectional curvature KM ≤ 0
along each plane section at each point of M .

By [12], the condition (2.31) is rather general since we allow the function λ to
depend on the whole variable x = (r, ω). The reason to assume (2.31) is that since
X does not have to have a differentiable structure, the function λ(r, ω) can not be
in general obtained as the Jacobian of the polar change of coordinates. However, if
such a differentiable structure exists on X, the condition (2.31) can be obtained as
the standard polar decomposition formula. In particular, let us give several examples
of X for which the condition (2.31) is satisfied with different expressions for λ(r, ω):

(I) Euclidean space Rn: λ(r, ω) = rn−1.
(II) Homogeneous groups: λ(r, ω) = rQ−1, where Q is the homogeneous dimension

of the group. Such groups have been consistently developed by Folland and
Stein [1], see also an up-to-date exposition in [3].

(III) Hyperbolic spaces Hn: λ(r, ω) = (sinh r)n−1.
(IV) Cartan-Hadamard manifolds: Let us fix a point a ∈M and denote by ρ(x) =

d(x, a) the geodesic distance from x to a on M . The exponential map expa :
TaM → M is a diffeomorphism, see e.g. Helgason [60]. Let J(ρ, ω) be the
density function on M . Then we have the following polar decomposition:∫

M

f(x)dx =

∫ ∞
0

∫
Sn−1

f(expa(ρω))J(ρ, ω)ρn−1dρdω,
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so that we have (2.31) with λ(ρ, ω) = J(ρ, ω)ρn−1.
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3. Direct Inequalities

In this chapter, we show basic direct fractional functional and geometric inequalities
on homogeneous Lie group.

3.1. Fractional Hardy inequality. In this section, we show fractional Hardy in-
equality. For showing fractional Hardy inequality, we need some preliminary results.

Lemma 3.1 ([33], Lemma 2.6). Assume that p > 1, then for all t ∈ [0, 1] and a ∈ C,
we have

|a− t|p ≥ (1− t)p−1(|a|p − t). (3.1)

In the all following lemma, we assume that Q > 2, p > 1 and s ∈ (0, 1) be such
that Q > sp.

Lemma 3.2 (Picone-type inequality). Let ω ∈ W s,p
0 (Ω) be ω > 0 in Ω ⊂ G and

suppose that (−∆p)
sω = ν > 0 with ν ∈ L1

loc(Ω) , then for all u ∈ C∞0 (Ω), we have

1

2

∫
Ω

∫
Ω

|u(x)− u(y)|p

|y−1x|Q+ps
dxdy ≥

〈
(−∆p)

sω,
|u|p

ωp−1

〉
. (3.2)

Proof. Proof of this lemma is based [34] and [61]. By setting v = |u|p
|ω|p−1 and k(x, y) =

1
|y−1x|Q+ps , then we obtain

〈(−∆p)
sω, v〉L2(Ω) =

∫
Ω

v(x)dx

∫
Ω

|ω(x)− ω(y)|p−2(ω(x)− ω(y))k(x, y)dy

=

∫
Ω

|u|p

|ω|p−1
dx

∫
Ω

|ω(x)− ω(y)|p−2(ω(x)− ω(y))k(x, y)dy,

where 〈·, ·〉 is inner product in L2(Ω), By using the definition of quasi-norm we have
|x−1| = |x| for all x ∈ G. Then we get

k(x, y) =
1

|y−1x|Q+ps
=

1

|z|Q+ps
=

1

|z−1|Q+ps

=
1

|(y−1x)−1|Q+ps
=

1

|x−1y|Q+ps
= k(y, x),

for all x, y ∈ G. By using k(x, y) is symmetric, we obtain that

〈(−∆p)
sω, v〉L2(Ω) =

1

2

∫
Ω

∫
Ω

(
|u(x)|p

|ω(x)|p−1
− |u(y)|p

|ω(y)|p−1

)
|ω(x)− ω(y)|p−2(ω(x)− ω(y))k(x, y)dydx.

Let g = u
ω

and

R(x, y) = |u(x)− u(y)|p − (|g(x)|pω(x)− |g(y)|pω(y))|ω(x)− ω(y)|p−2(ω(x)− ω(y)),

then we have

〈(−∆p)
sω, v〉L2(Ω) +

1

2

∫
Ω

∫
Ω

R(x, y)k(x, y)dydx =
1

2

∫
Ω

∫
Ω

|u(x)− u(y)|pk(x, y)dydx.
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By the symmetry argument, we can assume that ω(x) ≥ ω(y). By using Lemma 3.1

with t = ω(y)
ω(x)

and a = g(x)
g(y)

and we establish that R(x, y) ≥ 0. Thus, we have proved

the inequality

〈(−∆p)
sω, v〉L2(Ω) ≤

1

2

∫
Ω

∫
Ω

|u(x)− u(y)|p

|y−1x|Q+ps
dydx.

Lemma 3.2 is proved. �

Lemma 3.3. Let ω = |x|−γ with γ ∈
(

0, Q−ps
p−1

)
where Q > sp, then there exists a

positive constant µ(γ) > 0 such that

(−∆p)
s(|x|−γ) = µ(γ)

1

|x|ps+γ(p−1)
a.e. in G \ {0}. (3.3)

Proof. Let us set r = |x| and ρ = |y| with x = rx′ and y = ρy′ where |x′| = |y′| = 1.
Then by using polar decomposition (see (2.11)), we have

(−∆p)
sω

=

∫ +∞

0

|r−γ − ρ−γ|p−2(r−γ − ρ−γ)ρQ−1

(∫
S

dσ(y′)

|(ρy′)−1(rx′)|Q+ps

)
dρ

=
1

|x|ps+γ(p−1)

∫ +∞

0

∣∣∣∣1− ρ−γ

r−γ

∣∣∣∣p−2

×

×
(

1− ρ−γ

r−γ

)
ρQ−1

rQ

(∫
S

dσ(y′)

|
(
ρ
r
y′
)−1

x′|Q+ps

)
dρ.

Let ρ̃ = ρ
r

and L(ρ̃) =
∫
S

dσ(y′)
|(ρ̃y′)−1x′)|Q+ps , we get

(−∆p)
sω =

1

|x|ps+γ(p−1)

∫ +∞

0

|1− ρ̃−γ|p−2(1− ρ̃−γ)L(ρ̃)ρ̃Q−1dρ̃.

Then it easy to see

µ(γ) =

∫ +∞

0

φ(ρ̃)dρ̃ (3.4)

with φ(ρ̃) = |1− ρ̃−γ|p−2(1− ρ̃−γ)L(ρ̃)ρ̃Q−1.
We need to show that µ(γ) is a positive and bounded. Firstly, let us show bound-

edness of µ(γ). We get

µ(γ) =

∫ 1

0

φ(ρ̃)dρ̃+

∫ +∞

1

φ(ρ̃)dρ̃ = I1 + I2. (3.5)

By changing to the new variable ζ = 1
ρ̃

we obtain L(ρ̃) = L
(

1
ζ

)
= ζQ+psL(ζ) for any

ζ > 0. Thus, we establish

µ(γ) =

∫ +∞

1

(ρ−γ − 1)p−1(ρQ−1−γ(p−1) − ρps−1)L(ρ)dρ. (3.6)

For ρ→ 1 we get

(ρ−γ − 1)p−1(ρQ−1−γ(p−1) − ρps−1)L(ρ) ' (ρ− 1)−1−ps+p ∈ L1(1, 2). (3.7)
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Similarly, for ρ→∞ we have

(ρ−γ − 1)p−1(ρQ−1−γ(p−1) − ρps−1)L(ρ) ' ρ−1−ps ∈ L1(2,∞). (3.8)

It means we show that µ(γ) is bounded. By (3.6) with γ ∈
(

0, Q−ps
p−1

)
we see that

µ(γ) is positive.
Lemma 3.3 is proved. �

Finally, as a result we obtain the following analogue of the fractional Hardy in-
equality on G.

Theorem 3.4 (Fractional Hardy inequality). Assume Q > 2, p > 1 and s ∈ (0, 1)
be such that Q > sp. Then for all u ∈ C∞0 (G) we have∫

G

|u(x)|p

|x|sp
dx ≤ C[u]ps,p, (3.9)

where C is positive constant.

Proof. Let u ∈ C∞0 (G) and γ < Q−ps
p−1

. By using Lemma 3.3 and Lemma 3.2 we have

1

2
[u]ps,p =

1

2

∫
G

∫
G

|u(x)− u(y)|p

|y−1x|Q+ps
dxdy ≥

〈
(−∆p)

s(|x|−γ), |u(x)|p

|x|−γ(p−1)

〉

= µ(γ)

∫
G

|u(x)|p

|x|ps
dx, (3.10)

completing proof. �

3.2. Fractional Sobolev inequality. In this section we prove fractional Sobolev
inequality on the homogeneous Lie groups.

For showing an analogue of the fractional Sobolev inequality, firstly we need show
some preliminary results.

Lemma 3.5. Let p > 1, s ∈ (0, 1) and K ⊂ G be Haar measurable set. Fix x ∈ G
and a quasi-norm | · | on G, then we have∫

Kc

dy

|y−1x|Q+sp
≥ C|K|−sp/Q, (3.11)

where C = C(Q, s, p) is a positive constant, Kc = G\K and |K| is the Haar measure
of K.

Proof. By setting δ :=
(
Q|K|
ωQ

)1/Q

, where ωQ is a surface measure of the unit quasi-

ball on G and let us fix x ∈ G such that K ∩B(x, δ) 6= ∅ where B(x, δ) is a quasi-ball
centered at x with radius δ. Then, we get

|Kc ∩B(x, δ)| = |B(x, δ)| − |K ∩B(x, δ)|
= |K| − |K ∩B(x, δ)| = |K ∩Bc(x, δ)|,

(3.12)
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where | · | is the Haar measure on G. Then,∫
Kc

dy

|y−1x|Q+sp
=

∫
Kc∩B(x,δ)

dy

|y−1x|Q+sp
+

∫
Kc∩Bc(x,δ)

dy

|y−1x|Q+sp

≥
∫
Kc∩B(x,δ)

dy

δQ+sp
+

∫
Kc∩Bc(x,δ)

dy

|y−1x|Q+sp

=
|Kc ∩B(x, δ)|

δQ+sp
+

∫
Kc∩Bc(x,δ)

dy

|y−1x|Q+sp
.

By using (3.12) we get∫
Kc

dy

|y−1x|Q+sp
≥ |K

c ∩B(x, δ)|
δQ+sp

+

∫
Kc∩Bc(x,δ)

dy

|y−1x|Q+sp

=
|K ∩Bc(x, δ)|

δQ+sp
+

∫
Kc∩Bc(x,δ)

dy

|y−1x|Q+sp

=

∫
K∩Bc(x,δ)

dy

δQ+sp
+

∫
Kc∩Bc(x,δ)

dy

|y−1x|Q+sp

≥
∫
K∩Bc(x,δ)

dy

|y−1x|Q+sp
+

∫
Kc∩Bc(x,δ)

dy

|y−1x|Q+sp

=

∫
Bc(x,δ)

dy

|y−1x|Q+sp
.

By using the polarisation formula (2.11) with centered at x, we have∫
Kc

dy

|y−1x|Q+sp
≥ C|K|−sp/Q. (3.13)

�

Lemma 3.6 ([39], Lemma 6.2). Fix T > 1. Let p > 1 and s ∈ (0, 1) be such that
Q > sp, m ∈ Z and ak be a bounded, decreasing, nonnegative sequence with ak = 0
for any k ≥ m. Then∑

k∈Z

a
(Q−sp)/Q
k T k ≤ C

∑
k∈Z, ak 6=0

ak+1a
−sp/Q
k T k,

for a positive constant C = C(Q, s, p, T ) > 0.

Lemma 3.7. Suppose that p > 1, s ∈ (0, 1), Q > sp and | · | be a quasi-norm on
G. Assume that u ∈ L∞(G) be compactly supported and ak := |{|u| > 2k}| for any
k ∈ Z. Then,

C
∑

k∈Z, ak 6=0

ak+1a
−sp/Q
k 2kp ≤ [u]ps,p, (3.14)

where C = C(Q, p, s) is a positive constant and [u]s,p is defined by (2.12).

Proof. Let us define
Ak := {|u| > 2k}, k ∈ Z, (3.15)

and
Dk := Ak \ Ak+1 = {2k < |u| ≤ 2k+1} and dk = |Dk|. (3.16)
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Since Ak+1 ⊆ Ak, it is easy to see

ak+1 ≤ ak. (3.17)

By the assumption u ∈ L∞(G) is compactly supported, ak and dk are bounded and
vanish when k is large enough. Also, we notice that the Dk’s are disjoint, therefore,⋃

l∈Z, l≤k

Dl = Ack+1 (3.18)

and ⋃
l∈Z, l≥k

Dl = Ak. (3.19)

By using (3.19) we establish that ∑
l∈Z, l≥k

dl = ak (3.20)

and

dk = ak −
∑

l∈Z, l≥k+1

dl. (3.21)

From ak and dk are bounded and vanish when k is large enough, (3.20) and (3.21)
are convergent. Let us define the convergent series

S :=
∑

l∈Z, al−1 6=0

2lpa
−sp/Q
l−1 dl. (3.22)

We have that Dk ⊆ Ak ⊆ Ak−1, then, a
−sp/Q
i−1 dl ≤ a

−sp/Q
i−1 al−1. Thus,

{(i, l) ∈ Z s.t. ai−1 6= 0 and a
−sp/Q
i−1 dl 6= 0} ⊆ {(i, l) ∈ Z s.t. al−1 6= 0}. (3.23)

By combining (3.23) and (3.17), we compute that∑
i∈Z, ai−1 6=0

∑
l∈Z, l≥i+1

2ipa
−sp/Q
i−1 dl =

∑
i∈Z, ai−1 6=0

∑
l∈Z, l≥i+1, asp/Qdl 6=0

2ipa
−sp/Q
i−1 dl

≤
∑
i∈Z

∑
l∈Z, l≥i+1, al−1 6=0

2ipa
−sp/Q
i−1 dl =

∑
l∈Z, al−1 6=0

∑
i∈Z, i≤l−1

2ipa
−sp/Q
i−1 dl

≤
∑

l∈Z, al−1 6=0

∑
i∈Z, i≤l−1

2ipa
−sp/Q
l−1 dl =

∑
l∈Z, al−1 6=0

+∞∑
k=0

2p(l−1−k)a
−sp/Q
l−1 dl ≤ S. (3.24)

Notice that

||u(x)| − |u(y)|| ≤ |u(x)− u(y)|, ∀x, y ∈ G.
By setting i ∈ Z and x ∈ Di, then for all j ∈ Z with j ≤ i− 2, for any y ∈ Dj using
the last inequality, we have that

|u(x)− u(y)| ≥ 2i − 2j+1 ≥ 2i − 2i−1 ≥ 2i−1
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and using (3.18), we get∑
j∈Z, j≤i−2

∫
Dj

|u(x)− u(y)|p

|y−1x|Q+sp
dy ≥ 2(i−1)p

∑
j∈Z, j≤i−2

∫
Dj

dy

|y−1x|Q+sp

= 2(i−1)p

∫
Aci−1

dy

|y−1x|Q+sp
. (3.25)

By combining (3.25) and Lemma 3.5, we get∑
j∈Z, j≤i−2

∫
Dj

|u(x)− u(y)|p

|y−1x|Q+sp
dy ≥ C2ipa

−sp/Q
i−1 ,

where C is a positive constant. It means, for any i ∈ Z, we get∑
j∈Z, j≤i−2

∫
Di

∫
Dj

|u(x)− u(y)|p

|y−1x|Q+sp
dxdy ≥ C2ipa

−sp/Q
i−1 di. (3.26)

By combinig (3.26) and (3.21) we obtain that∑
j∈Z, j≤i−2

∫
Di

∫
Dj

|u(x)− u(y)|p

|y−1x|Q+sp
dxdy

≥ C

(
2ipa

−sp/Q
i−1 ai −

∑
l∈Z, l≥i+1

2ipa
−sp/Q
i−1 dl

)
. (3.27)

From (3.26) and (3.22) we obtain that∑
i∈Z, ai−1 6=0

∑
j∈Z, j≤i−2

∫
Di

∫
Dj

|u(x)− u(y)|p

|y−1x|Q+sp
dxdy

≥ C
∑

i∈Z, ai−1 6=0

2ipa
−sp/Q
i−1 di ≥ C S. (3.28)

Then, by using (3.24), (3.27) and (3.28), we have∑
i∈Z, ai−1 6=0

∑
j∈Z, j≤i−2

∫
Di

∫
Dj

|u(x)− u(y)|p

|y−1x|Q+sp
dxdy ≥ C

∑
i∈Z, ai−1 6=0

2ipa
−sp/Q
i−1 ai

−C
∑

i∈Z, ai−1 6=0

∑
l∈Z, l≥i+1

2ipa
−sp/Q
i−1 dl ≥ C

∑
i∈Z, ai−1 6=0

2ipa
−sp/Q
i−1 ai − C S

≥ C
∑

i∈Z, ai−1 6=0

2ipa
−sp/Q
i−1 ai −

∑
i∈Z, ai−1 6=0

∑
j∈Z, j≤i−2

∫
Di

∫
Dj

|u(x)− u(y)|p

|y−1x|Q+sp
dxdy.

Thus,∑
i∈Z, ai−1 6=0

∑
j∈Z, j≤i−2

∫
Di

∫
Dj

|u(x)− u(y)|p

|y−1x|Q+sp
dxdy ≥ C

2

∑
i∈Z, ai−1 6=0

2ipa
−sp/Q
i−1 ai, (3.29)
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for a constant C > 0. By using symmetry property and (3.29), we obtain that

[u]ps,p =

∫
G

∫
G

|u(x)− u(y)|p

|y−1x|Q+sp
dxdy =

∑
i,j∈Z

∫
Di

∫
Dj

|u(x)− u(y)|p

|y−1x|Q+sp
dxdy

≥ 2
∑

i,j∈Z, j<i

∫
Di

∫
Dj

|u(x)− u(y)|p

|y−1x|Q+sp
dxdy

≥ 2
∑

i∈Z, ai−1 6=0

∑
j∈Z, j≤i−2

∫
Di

∫
Dj

|u(x)− u(y)|p

|y−1x|Q+sp
dxdy

≥ C
∑

i∈Z, ai−1 6=0

2ipa
−sp/Q
i−1 ai.

Lemma 3.7 is proved. �

Lemma 3.8. Assume that 1 < p <∞ and u : G→ R be a measurable function. For
any n ∈ R

un := max{min{u(x), n},−n}, for any x ∈ G. (3.30)

Then,
lim

n→+∞
‖un‖Lp(G) = ‖u‖Lp(G).

Proof. The proof is the same as in [39, Lemma 6.4]. �

Then, by using the above lemmas we show the following analogue of the fractional
Sobolev inequality on G:

Theorem 3.9 (Fractional Sobolev inequality). Let p > 1, s ∈ (0, 1), Q > sp be
such that p∗ = p∗(Q, s, p) = Qp

Q−sp . Let | · | be a quasi-norm on G. Then for any

u ∈ W s,p(G) and for any quasi-norm | · |, we have

‖u‖Lp∗ (G) ≤ C[u]s,p, (3.31)

where C = C(Q, p, s) > 0 .

Proof. Firstly, assume that [u]s,p (Gagliardo seminorm) is bounded, i.e.,

[u]ps,p =

∫
G

∫
G

|u(x)− u(y)|p

|y−1x|Q+sp
dxdy < +∞. (3.32)

and we assume that u ∈ L∞(G).
If (3.32) is executed for bounded functions, this is also true for the function un

obtained by cutting the function u at levels −n and n levels. Then, by combining
Lemma 3.8 and (3.32) with the dominated convergence theorem, we have that

lim
n→+∞

[un]ps,p = lim
n→+∞

∫
G

∫
G

|un(x)− un(y)|p

|y−1x|Q+sp
dxdy

=

∫
G

∫
G

|u(x)− u(y)|p

|y−1x|Q+sp
dxdy = [u]ps,p. (3.33)

As in Lemma 3.7 we define ak and Ak, so we have

||u‖Lp∗ (G) =

(∑
k∈Z

∫
Ak\Ak+1

|u(x)|p∗dx

)1/p∗

≤

(∑
k∈Z

∫
Ak\Ak+1

2(k+1)p∗dx

)1/p∗
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≤

(∑
k∈Z

2(k+1)p∗ak

)1/p∗

. (3.34)

Therefore, by combining Lemma 3.6 with p/p∗ = 1− sp/Q < 1 and T = 2p, obtain

‖u‖p
Lp∗ (G)

≤ 2p

(∑
k∈Z

2kp
∗
ak

)p/p∗

≤ 2p
∑
k∈Z

2kpa
(Q−sp)/Q
k

≤ C
∑

k∈Z, ak 6=0

2kpa
−sp/Q
k ak+1 (3.35)

for a positive constant C = C(Q, p, s, q) > 0. By using Lemma 3.7 get

‖u‖p
Lp∗ (G)

≤ C
∑

k∈Z, ak 6=0

2kpa
−sp/Q
k ak+1 ≤ C

∫
G

∫
G

|u(x)− u(y)|p

|y−1x|Q+sp
dxdy = C[u]ps,p,

(3.36)
completing the proof. �

3.3. Fractional Hardy-Sobolev inequality. In this section, we prove fractional
Hardy-Sobolev inequality. We generalise both above inequalities, so the unified exten-
sion with arbitrary quasi-norm gives new inequalities even in the Euclidean (Abelian)
case.

Theorem 3.10 (Fractional Hardy-Sobolev inequality). Suppose that p > 1, s ∈
(0, 1), Q > 2, 0 < β < sp and Q > sp be such that p∗s,β = p(Q−β)

Q−sp . Then for any

u ∈ W s,p(G) and for any quasi-norm | · | of G, we have(∫
G

|u(x)|p∗s,β
|x|β

dx

) 1
p∗
s,β

≤ C[u]s,p, (3.37)

where C is a positive constant.

Proof. By using Hölder’s inequality with β
sp

+ sp−β
sp

= 1, we get

∫
G

|u(x)|p∗s,β
|x|α

dx =

∫
G

|u(x)|βs |u(x)|p∗s,β−
β
s

|x|β
dx

≤
(∫

G

|u(x)|p

|x|sp
dx

) β
sp
(∫

G
|u(x)|(p

∗
s,β−

β
s )

sp
sp−β dx

) sp−β
sp

. (3.38)

By some calculation, we have(
p∗s,β −

β

s

)
sp

sp− β
=

(
p(Q− β)

Q− sp
− β

s

)
sp

sp− β

=
Qsp− βsp−Qβ + βsp

s(Q− sp)
sp

sp− β
=

Qp

Q− sp
= p∗,
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where p∗ is the Sobolev exponent. By combining the fractional Hardy and Sobolev
inequalities, that is, Theorems 3.4 and 3.9, we establish∫

G

|u(x)|p∗s,β
|x|β

dx ≤
(∫

G

|u(x)|p

|x|sp
dx

) β
sp
(∫

G
|u(x)|p∗dx

) sp−β
sp

(3.9)

≤ C[u]
β
s
s,p

(∫
G
|u(x)|p∗dx

) sp−β
sp

(3.31)

≤ C[u]
β
s
s,p[u]

sp−β
sp

p∗

s,p

= C[u]
β
s

+ sp−β
sp

p∗

s,p .

(3.39)

Let us compute the exponent of the last term

β

s
+
sp− β
sp

p∗ =
β

s
+
sp− β
sp

Qp

Q− sp

=
1

s

(
βQ− βsp+Qsp− βQ

Q− sp

)
=

1

s

sp(Q− β)

Q− sp
= p∗s,β.

Finally, we have ∫
G

|u(x)|p∗s,β
|x|β

dx ≤ C[u]
β
s

+ sp−β
sp

p∗

s,p = C[u]
p∗s,β
s,p ,

completing the proof. �

Corollary 3.11. In Theorem 3.10, by setting β = 0, we obtain the fractional Sobolev
inequality (3.31).

Corollary 3.12. When β = sp in Theorem 3.10, we have the fractional Hardy in-
equality (3.9).

Remark 3.13. In the Abelian case (RN ,+), Q = N with | · | = | · |E where | · |E is the
standard Euclidean distance, (3.37) implies the fractional Hardy-Sobolev inequality on
RN (see [62]). Moreover, the inequality is valid for any quasi-norm, not necessarily
the Euclidean one. Therefore, even in the Abelian (Euclidean) case it extends the
results of [62].

3.4. Fractional Gagliardo-Nirenberg inequality. In this section we show frac-
tional Gagliardo-Nirenberg inequality on homogeneous Lie groups. One of the gen-
eralisation of the fractional Sobolev inequality is the fractional Gagliardo-Nirenberg
inequality.

Theorem 3.14. Suppose that Q ≥ 2, s ∈ (0, 1), p > 1, α ≥ 1, τ > 0, a ∈ (0, 1],
Q > sp and

1

τ
= a

(
1

p
− s

Q

)
+

1− a
α

.

Then,
‖u‖Lτ (G) ≤ C[u]as,p‖u‖1−a

Lα(G), ∀ u ∈ C
1
c (G), (3.40)

where C = C(s, p,Q, a, α) > 0.
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Proof of Theorem 3.14. By using the Hölder inequality with 1
τ

= a
(

1
p
− s

Q

)
+ 1−a

α
we

establish

‖u‖τLτ (G) =

∫
G
|u|τdx =

∫
G
|u|aτ |u|(1−a)τdx ≤ ‖u‖aτLp∗ (G)‖u‖

(1−a)τ
Lα(G) , (3.41)

where p∗ = Qp
Q−sp . By combining (3.41) and the fractional Sobolev inequality (Theo-

rem 3.9), we have

‖u‖τLτ (G) ≤ ‖u‖aτLp∗ (G)‖u‖
(1−a)τ
Lα(G) ≤ C[u]aτs,p‖u‖

(1−a)τ
Lα(G) ,

that is,
‖u‖Lτ (G) ≤ C[u]as,p‖u‖1−a

Lα(G), (3.42)

where C is a positive constant independent of u. Theorem 3.14 is proved. �

Remark 3.15. In the Abelian case (RN ,+) with the standard Euclidean distance
instead of the quasi-norm and s → 1−, from Theorem 3.14 we get the Gagliardo-
Nirenberg inequality which was proved in [63] and [64].

Remark 3.16. In the Abelian case (RN ,+) with the standard Euclidean distance in-
stead of the quasi-norm, from Theorem 3.14 we get the fractional Gagliardo-Nirenberg
inequality which was showed in [41].

3.5. Fractional Caffarelli-Kohn-Nirenberg inequality. In this section we prove
the weighted fractional Caffarelli-Kohn-Nirenberg inequality on the homogeneous Lie
groups.

Let us give some notations. The mean of a function u is defined by

uΩ = −
∫

Ω

u(x)dx =
1

|Ω|

∫
Ω

udx, u ∈ L1(Ω), (3.43)

where |Ω| is the Haar measure of Ω ⊂ G.
We will also use the decomposition of G into quasi-annuli Ak defined by

Ak := {x ∈ G : 2k ≤ |x| < 2k+1}, (3.44)

where |x| is a quasi-norm on G.
To show the fractional Caffarelli-Kohn-Nirenberg inequality on G we will use the

fractional Gagliardo-Nirenberg inequality (Theorem 3.14) in the proof of the following
lemma.

Lemma 3.17. Suppose that Q ≥ 2, s ∈ (0, 1), p > 1, α ≥ 1, τ > 0, a ∈ (0, 1] and

1

τ
≥ a

(
1

p
− s

Q

)
+

1− a
α

.

Assume that λ > 0 and 0 < r < R and set

Ω = {x ∈ G : λr < |x| < λR}.
Then, for every u ∈ C1(Ω), we have(

−
∫

Ω

|u− uΩ|τdx
) 1

τ

≤ Cr,Rλ
a(sp−Q)

p [u]as,p,Ω

(
−
∫

Ω

|u|αdx
) 1−a

α

, (3.45)

where Cr,R is a positive constant independent of u and λ.
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Proof of Lemma 3.17. Without loss of generality, we suppose that 0 < s′ ≤ s and
τ ′ ≥ τ are such that

1

τ ′
= a

(
1

p
− s′

Q

)
+

1− a
α

,

and λ = 1, then let Ω1 be

Ω1 = {x ∈ G : r < |x| < R}.

By combining the fractional Gagliardo-Nirenberg inequality (see, Theorem 3.14),
Jensen’s inequality and [u]s′,p,Ω ≤ C[u]s,p,Ω, we establish

(
−
∫

Ω1

|u− uΩ1 |τdx
) 1

τ

=
1

|Ω1|
1
τ

‖u− uΩ1‖τ

≤ Cr,R‖u− uΩ1‖Lτ ′ (Ω1) ≤ Cr,R[u− uΩ1 ]
a
s′,p,Ω1

‖u‖1−a
Lα(Ω1)

≤ Cr,R

(∫
Ω1

∫
Ω1

|u(x)− uΩ1 − u(y) + uΩ1 |p

|y−1x|Q+s′p
dxdy

)a
p

‖u‖1−a
Lα(Ω1)

≤ Cr,R[u]as,p,Ω1
‖u‖1−a

Lα(Ω1)

≤ Cr,R[u]as,p,Ω1

(
−
∫

Ω1

|u|αdx
) 1−a

α

,

(3.46)

where Cr,R > 0. By setting u(λx) instead of u(x), we have

(
−
∫

Ω1

∣∣∣∣u(λx)− −
∫

Ω1

u(λx)dx

∣∣∣∣τ dx) 1
τ

≤ Cr,R

(∫
Ω1

∫
Ω1

|u(λx)− u(λy)|p

|y−1x|Q+sp
dxdy

)a
p

×
(

1

|Ω1|

∫
Ω1

|u(λx)|αdx
) 1−a

α

. (3.47)
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Then by using (3.46) and Proposition 2.4, we calculate(
−
∫

Ω

∣∣∣∣u(x)− −
∫

Ω

u(x)dx

∣∣∣∣τ dx) 1
τ

=

(
1

|Ω|

∫
Ω

∣∣∣∣u(x)− 1

|Ω|

∫
Ω

u(x)dx

∣∣∣∣τ dx) 1
τ

=

(
1

|Ω|

∫
Ω

∣∣∣∣u(λy)− 1

|Ω|

∫
Ω

u(λy)d(λy)

∣∣∣∣τ d(λy)

) 1
τ

=

(
1

|Ω1|

∫
Ω1

λQ

λQ

∣∣∣∣u(λy)− λQ

λQ|Ω1|

∫
Ω1

u(λy)dy

∣∣∣∣τ dy)
1
τ

=

(
1

|Ω1|

∫
Ω1

∣∣∣∣u(λy)− 1

|Ω1|

∫
Ω1

u(λy)dy

∣∣∣∣τ dy) 1
τ

≤ Cr,R

(∫
Ω1

∫
Ω1

|u(λx)− u(λy)|p

|y−1x|Q+sp
dxdy

)a
p
(

1

|Ω1|

∫
Ω1

|u(λx)|αdx
) 1−a

α

= Cr,R

(∫
Ω1

∫
Ω1

λ2QλQ+sp|u(λx)− u(λy)|p

λ2QλQ+sp|y−1x|Q+sp
dxdy

)a
p
(

1

|Ω1|

∫
Ω1

λQ

λQ
|u(λx)|αdx

) 1−a
α

= Cr,R

(∫
Ω

∫
Ω

λsp−Q|u(λx)− u(λy)|p

|(λy)−1(λx)|Q+sp
d(λx)d(λy)

)a
p
(

1

|Ω|

∫
Ω

|u(λx)|αd(λx)

) 1−a
α

= Cr,R

(∫
Ω

∫
Ω

λsp−Q|u(x)− u(y)|p

|y−1x|Q+sp
dxdy

)a
p
(

1

|Ω|

∫
Ω

|u(x)|αdx
) 1−a

α

= Cr,Rλ
a(sp−Q)

p [u]as,p,Ω

(
1

|Ω|

∫
Ω

|u(x)|αdx
) 1−a

α

,

(3.48)

completing the proof. �

Theorem 3.18 (Fractional Caffarelli-Kohn-Nirenberg inequality). Suppose that Q ≥
2, s ∈ (0, 1), p > 1, α ≥ 1, τ > 0, a ∈ (0, 1], β1, β2, β, µ, γ ∈ R, β1 + β2 = β and

1

τ
+
γ

Q
= a

(
1

p
+
β − s
Q

)
+ (1− a)

(
1

α
+
µ

Q

)
. (3.49)

Suppose in addition that, 0 ≤ β − σ with γ = aσ + (1− a)µ, and

β − σ ≤ s only if
1

τ
+
γ

Q
=

1

p
+
β − s
Q

. (3.50)

Then for u ∈ C1
c (G) we have

‖|x|γu‖Lτ (G) ≤ C[u]as,p,β‖|x|µu‖1−a
Lα(G), (3.51)

when 1
τ

+ γ
Q
> 0, and for u ∈ C1

c (G \ {e}) we have

‖|x|γu‖Lτ (G) ≤ C[u]as,p,β‖|x|µu‖1−a
Lα(G), (3.52)

when 1
τ

+ γ
Q
< 0. Here e is the identity element of G.
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Proof. Firstly, let us consider the case (3.50), that is, β−σ ≤ s and 1
τ

+ γ
Q

= 1
p

+ β−s
Q

.

By combining Lemma 3.17, λ = 2k, r = 1, R = 2 and Ω = Ak, we obtain

(
−
∫
Ak,q

|u− uAk,q |τdx

) 1
τ

≤ C2
ak(sp−Q)

p [u]as,p,q,Ak,q

(
−
∫
Ak,q

|u|αdx

) 1−a
α

, (3.53)

where Ak is defined in (3.44) and k ∈ Z. From (3.53) we obtain

∫
Ak

|u|τdx =

∫
Ak

|u− uAk + uAk |τdx

≤ C

(∫
Ak

|uAk |τdx+

∫
Ak

|u− uAk |τdx
)

= C

(∫
Ak

|uAk |τdx+
|Ak|
|Ak|

∫
Ak

|u− uAk |τdx
)

= C

(
|Ak||uAk |τ + |Ak| −

∫
Ak

|u− uAk |τdx
)

≤ C

(
|Ak||uAk |τ + 2

ak(sp−Q)τ
p |Ak|[u]aτs,p,Ak

(
1

|Ak|

∫
Ak

|u|αdx
) (1−a)τ

α

)
≤ C

(
2Qk|uAk |τ + 2

ak(sp−Q)τ
p 2kQ2−

Q(1−a)τk
α [u]aτs,p,Ak‖u‖

(1−a)τ
Lα(Ak)

)
.

(3.54)

Then, from (3.54) we establish

∫
Ak

|x|γτ |u|τdx ≤ 2(k+1)γτ

∫
Ak

|u|τdx ≤ C2(Q+γτ)k|uAk |τ

+ C2γτk2kQ2
ak(sp−Q)τ

p 2−
Q(1−a)τk

α [u]aτs,p,Ak‖u‖
(1−a)τ
Lα(Ak) = C2(Q+γτ)k|uAk |τ

+ C2(γτ+Q+
a(sp−Q)τ

p
−Q(1−a)τ

α )k
(∫

Ak

∫
Ak

2kpβ12kpβ2|u(x)− u(y)|p

2kpβ|y−1 x|Q+sp
dxdy

)aτ
p

×
(∫

Ak

2kαµ

2kαµ
|u(x)|αdx

) (1−a)τ
α

≤ C2(Q+γτ)k|uAk |τ

+ C2(γτ+Q+
a(sp−Q)τ

p
−Q(1−a)τ

α
−aβτ−µτ(1−a))k

(∫
Ak

∫
Ak

|x|pβ1 |y|pβ2 |u(x)− u(y)|p

|y−1x|Q+sp
dxdy

)aτ
p

×
(∫

Ak

|x|αµ|u(x)|αdx
) (1−a)τ

α

≤ C2(Q+γτ)k|uAk |τ

+ C2(γτ+Q+
a(sp−Q)τ

p
−Q(1−a)τ

α
−aβτ−µτ(1−a))k[u]aτs,p,β,Ak‖|x|

µu‖(1−a)τ
Lα(Ak).
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From (3.49), we have

γτ +Q+
a(sp−Q)τ

p
− Q(1− a)τ

α
− aβτ − µτ(1− a)

= Qτ

(
γ

Q
+

1

τ
+
a(sp−Q)

Qp
− (1− a)

α
− aβ

Q
− µ(1− a)

Q

)
= Qτ

(
a

(
1

p
+
β − s
Q

)
+ (1− a)

(
1

α
+
µ

Q

)
+
a(sp−Q)

Qp
− (1− a)

α
− aβ

Q
− µ(1− a)

Q

)
= 0.

Thus, we obtain∫
Ak

|x|γτ |u|τdx ≤ C2(γτ+Q)k|uAk |τ + C[u]aτs,p,β,Ak‖|x|
µu‖(1−a)τ

Lα(Ak), (3.55)

and by summing over k from m to n, we get∫
∪nk=mAk

|x|γτ |u|τdx =

∫
{2m<|x|<2n+1}

|x|γτ |u|τdx ≤ C
n∑

k=m

2(γτ+Q)k|uAk |τ

+ C
n∑

k=m

[u]aτs,p,β,Ak‖|x|
µu‖(1−a)τ

Lα(Ak), (3.56)

where k,m, n ∈ Z and m ≤ n− 2.
Let us show (3.51). By choosing n such that

suppu ⊂ B2n , (3.57)

where B2n is a quasi-ball of G with the radius 2n.
The following known inequality will be used in the proof.

Lemma 3.19 (Lemma 2.2, [65]). Let ξ > 1 and η > 1. Then exists a positive
constant C depending ξ and η such that 1 < ζ < ξ,

(|a|+ |b|)η ≤ ζ|a|η +
C

(ζ − 1)η−1
|b|η, ∀ a, b ∈ R. (3.58)

Let us consider the following integral

−
∫
Ak+1,q∪Ak,q

∣∣∣∣∣u− −
∫
Ak+1,q∪Ak,q

u

∣∣∣∣∣
τ

dx

=
1

|Ak+1,q|+ |Ak,q|

∫
Ak+1,q∪Ak,q

∣∣∣∣∣u− −
∫
Ak+1,q∪Ak,q

u

∣∣∣∣∣
τ

dx

=
1

|Ak+1,q|+ |Ak,q|

(∫
Ak+1,q

∣∣∣∣∣u− −
∫
Ak+1,q∪Ak,q

u

∣∣∣∣∣
τ

dx+

∫
Ak,q

∣∣∣∣∣u− −
∫
Ak+1,q∪Ak,q

u

∣∣∣∣∣
τ

dx

)
.
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Then, we compute

−
∫
Ak+1∪Ak

∣∣∣∣∣u− −
∫
Ak+1∪Ak

u

∣∣∣∣∣
τ

dx

=
1

|Ak+1|+ |Ak|
( ∫

Ak+1

∣∣∣∣∣u− −
∫
Ak+1∪Ak

u

∣∣∣∣∣
τ

dx

+

∫
Ak

∣∣∣∣∣u− −
∫
Ak+1∪Ak

u

∣∣∣∣∣
τ

dx
)

≥ 1

|Ak+1|+ |Ak|

∫
Ak

∣∣∣∣∣u− −
∫
Ak+1∪Ak

u

∣∣∣∣∣
τ

dx

≥ 1

|Ak+1|+ |Ak|

∣∣∣∣∣
∫
Ak

(
u− −

∫
Ak+1∪Ak

u

)
dx

∣∣∣∣∣
τ

=
1

|Ak+1|+ |Ak|
∣∣ ∫

Ak

udx− |Ak|
|Ak+1|+ |Ak|

∫
Ak

udx

− |Ak|
|Ak+1|+ |Ak|

∫
Ak+1

udx
∣∣τ

=
1

|Ak+1|+ |Ak|
∣∣ |Ak+1|
|Ak+1|+ |Ak|

∫
Ak

udx

− |Ak|
|Ak+1|+ |Ak|

∫
Ak+1

udx
∣∣τ

=
1

(|Ak+1|+ |Ak|)τ+1

∣∣∣∣∣|Ak+1|
∫
Ak

udx− |Ak|
∫
Ak+1

udx

∣∣∣∣∣
τ

=
|Ak+1|τ |Ak|τ

(|Ak+1|+ |Ak|)τ+1

∣∣∣∣∣ 1

|Ak|

∫
Ak

udx− 1

|Ak+1|

∫
Ak+1

udx

∣∣∣∣∣
τ

=
|Ak+1|τ |Ak|τ

(|Ak+1|+ |Ak|)τ+1
|uAk+1

− uAk |τ

≥ C|uAk+1
− uAk |τ .

(3.59)

By combining (3.59) and Lemma 3.17, we get

|uAk+1
− uAk |τ ≤ C −

∫
Ak+1∪Ak

∣∣∣∣∣u− −
∫
Ak+1∪Ak

u

∣∣∣∣∣
τ

dx

≤ C2
ak(sp−Q)

p [u]τas,p,Ak+1∪Ak

(
−
∫
Ak+1∪Ak

|u|αdx

) (1−a)τ
α

.
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By using this fact with τ = 1, we get

|uAk | ≤ |uAk+1
− uAk |+ |uAk+1

|

≤ |uAk+1
|+ C2

ak(sp−Q)
p [u]as,p,Ak+1∪Ak

(
−
∫
Ak+1∪Ak

|u|αdx

) (1−a)
α

, (3.60)

and from Lemma 3.19 and η = τ , ζ = 2γτ+Qc, where c = 2
1+2γτ+Q

< 1, since γτ +Q >
0, we obtain

2(γτ+Q)k|uAk |τ ≤ c2(k+1)(γτ+Q)|uAk+1
|τ + C[u]τas,p,β,Ak+1∪Ak‖|x|

µu‖(1−a)τ
Lα(Ak+1∪Ak).

By summing over k from m to n and by using (3.57) we have

n∑
k=m

2(γτ+Q)k|uAk |τ ≤
n∑

k=m

c2(k+1)(γτ+Q)|uAk+1
|τ

+ C

n∑
k=m

[u]τas,p,β,Ak+1∪Ak‖|x|
µ(x)u‖(1−a)τ

Lα(Ak+1∪Ak). (3.61)

From (3.61), we get

(1− c)
n∑

k=m

2(γτ+Q)k|uAk |τ ≤ 2(γτ+Q)m|uAm |τ + (1− c)
n∑

k=m+1

2(γτ+Q)k|uAk |τ

≤ C
n∑

k=m

[u]τas,p,β,Ak+1∪Ak‖|x|
µu‖(1−a)τ

Lα(Ak+1∪Ak). (3.62)

This yields
n∑

k=m

2(γτ+Q)k|uAk |τ ≤ C
n∑

k=m

[u]τas,p,β,Ak+1∪Ak‖|x|
µu‖(1−a)τ

Lα(Ak+1∪Ak). (3.63)

By using (3.56) and (3.63), we have∫
{2m<|x|<2n+1}

|x|γτ |u|τdx ≤ C

n∑
k=m

[u]τas,p,β,Ak+1∪Ak‖|x|
µu‖(1−a)τ

Lα(Ak+1∪Ak). (3.64)

Assume s, t ≥ 0 be such that s+ t ≥ 1. Then for any xk, yk ≥ 0, we have

n∑
k=m

xsky
t
k ≤

(
n∑

k=m

xk

)s( n∑
k=m

yk

)t

. (3.65)

By using this inequality in (3.64) with s = τa
p

, t = (1−a)τ
α

, a
p

+ 1−a
α
≥ 1

τ
and s ≥ β−σ,

we obtain ∫
{|x|>2m}

|x|γτ |u|τdx ≤ C[u]aτs,p,β,∪∞k=mAk‖|x|
µu‖(1−a)τ

Lα(∪∞k=mAk). (3.66)

Inequality (3.51) is proved.
Let us show (3.52). The strategy of the proof is similar to the previous case. By

choosing m such that
suppu ∩B2m = ∅. (3.67)
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By using Lemma 3.17 we get

|uAk+1
− uAk |τ ≤ C2

aτk(sp−Q)
p [u]τas,p,Ak+1∪Ak

(
−
∫
Ak+1∪Ak

|u|αdx

) (1−a)τ
α

.

From Lemma 3.19 and choosing c = 1+2γτ+Q

2
< 1, since γτ +Q < 0, we establish

2(γτ+Q)(k+1)|uAk+1
|τ ≤ c2k(γτ+Q)|uAk |τ + C[u]τas,p,β,Ak+1∪Ak‖|x|

µu‖(1−a)τ
Lα(Ak+1∪Ak),

and by summing over k from m to n and by using (3.67) we obtain

n∑
k=m

2(γτ+Q)k|uAk |τ ≤ C

n−1∑
k=m−1

[u]τas,p,β,Ak+1∪Ak‖|x|
µu‖(1−a)τ

Lα(Ak+1∪Ak). (3.68)

By using (3.56) and (3.68), we obtain that∫
{2m<|x|<2n+1}

|x|γτ |u|τdx ≤ C
n−1∑

k=m−1

[u]τas,p,β,Ak+1∪Ak‖|x|
µu‖(1−a)τ

Lα(Ak+1∪Ak). (3.69)

From (3.65) we get∫
{|x|<2n+1}

|x|γτ |u|τdx ≤ C[u]τas,p,β,∪nk=−∞Ak‖|x|
µu‖(1−a)τ

Lα(∪nk=−∞Ak). (3.70)

The proof of the case s ≥ β − σ is complete.
Let us prove the case of β − σ > s. Without loss of generality, we suppose that

[u]s,p,β = ‖u‖Lα(G) = 1, (3.71)

where
1

p
+
β − s
Q
6= 1

α
+
µ

Q
.

We also suppose that a1 > 0, 1 > a2 and τ1, τ2 > 0 with

1

τ2

=
a2

p
+

1− a2

α
, (3.72)

and

if
a

p
+

1− a
α
− as

Q
> 0, then

1

τ1

=
a1

p
+

1− a1

α
− a1s

Q
,

if
a

p
+

1− a
α
− as

Q
≤ 0, then

1

τ
>

1

τ1

≥ a1

p
+

1− a1

α
− a1s

Q
. (3.73)

By taking γ1 = a1β + (1− a1)µ and γ2 = a2(β − s) + (1− a2)µ, we have

1

τ1

+
γ1

Q
≥ a1

(
1

p
+
β − s
Q

)
+ (1− a1)

(
1

α
+
µ

Q

)
(3.74)

and
1

τ2

+
γ2

Q
= a2

(
1

p
+
β − s
Q

)
+ (1− a2)

(
1

α
+
µ

Q

)
. (3.75)

Assume a1 and a2 be such that

|a− a1| and |a− a2| are small enough, (3.76)
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a2 < a < a1, if
1

p
+
β − s
Q

>
1

α
+
µ

Q
, (3.77)

a1 < a < a2, if
1

p
+
β − s
Q

<
1

α
+
µ

Q
. (3.78)

By combining (3.76)-(3.78) in (3.74), (3.75) and (3.49), we get

1

τ1

+
γ1

Q
>

1

τ
+
γ

Q
>

1

τ2

+
γ2

Q
> 0. (3.79)

From (3.73) in the case a
p

+ 1−a
α
− as

Q
> 0 with a > 0, β − σ > s and (3.76), we get

1

τ
− 1

τ1

= (a− a1)

(
1

p
− s

Q
− 1

α

)
+
a

Q
(β − σ) > 0, (3.80)

and
1

τ
− 1

τ2

= (a− a2)

(
1

p
− 1

α

)
+
a

Q
(β − σ − s) > 0. (3.81)

By combining (3.73), (3.80) and (3.81), we get

τ1 > τ, τ2 > τ.

Thus, by using last fact, (3.76) and Hölder’s inequality, we get

‖|x|γu‖Lτ (G\B1) ≤ C‖|x|γ1u‖Lτ1 (G), (3.82)

and
‖|x|γu‖Lτ (B1) ≤ C‖|x|γ2u‖Lτ2 (G), (3.83)

where B1 is the unit quasi-ball. By using the previous case, we get

‖|x|γ1u‖Lτ1 (G) ≤ C[u]a1s,p,β‖|x|
µu‖1−a1

Lα(G) ≤ C, (3.84)

and
‖|x|γ2u‖Lτ2 (G) ≤ C[u]a2s,p,β‖|x|

µu‖1−a2
Lα(G) ≤ C. (3.85)

The proof of Theorem 3.18 is complete. �

Remark 3.20. In the Abelian case (RN ,+) with the standard Euclidean distance
instead of quasi-norm in Theorem 3.18, we get the (Euclidean) fractional Caffarelli-
Kohn-Nirenberg inequality (see, e.g. [41], Theorem 1.1).

Remark 3.21. In the Abelian case (RN ,+) with the standard Eucledian distance
instead of the quasi-norm and s → 1− in (3.52), we get classical Caffarelli-Kohn-
Nirenberg inequality.

Remark 3.22. By taking in (3.52) a = 1, τ = p, β1 = β2 = 0, and γ = −s, we get
an analogue of the fractional Hardy inequality on homogeneous Lie groups (Theorem
3.4).

Remark 3.23. In the Abelian case (RN ,+) with the standard Eucledian distance
instead of the quasi-norm and by taking in (3.52) a = 1, τ = p, β1 = β2 = 0, and
γ = −s, we get the fractional Hardy inequality (Theorem 1.1, [1]).

Remark 3.24. By taking in (3.51) a = 1, τ = p∗, β1 = β2 = 0, and γ = 0, we get
an analogue of the fractional Sobolev inequality on homogeneous Lie groups (Theorem
3.9).
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Now we consider the critical case 1
τ

+ γ
Q

= 0.

Theorem 3.25 (Fractional critical Caffarelli-Kohn-Nirenberg inequality). Suppose
that Q ≥ 2, s ∈ (0, 1), p > 1, α ≥ 1, τ > 1, a ∈ (0, 1], β1, β2, β, µ, γ ∈ R,
β1 + β2 = β,

1

τ
+
γ

Q
= a

(
1

p
+
β − s
Q

)
+ (1− a)

(
1

α
+
µ

Q

)
. (3.86)

Suppose in addition that, 0 ≤ β − σ ≤ s with γ = aσ + (1− a)µ.
If 1

τ
+ γ

Q
= 0 and suppu ⊂ BR, then, we have∥∥∥∥∥ |x|γln 2R

|x|
u

∥∥∥∥∥
Lτ (G)

≤ C[u]as,p,β‖|x|µu‖1−a
Lα(G), u ∈ C

1
c (G), (3.87)

where BR = {x ∈ G : |x| < R} is the quasi-ball and 0 < r < R.

Proof of Theorem 3.25. The proof is similar to the proof of Theorem 3.18. In (3.55),
by summarising over k from m to n and by fixing ε > 0, we get∫

{|x|>2m}

|x|γτ

ln1+ε
(

2R
|x|

) |u|τdx ≤ C
n∑

k=m

1

(n+ 1− k)1+ε
|uAk |τ

+ C
n∑

k=m

[u]aτs,p,β,Ak‖|x|
µ(x)u‖(1−a)τ

Lα(Ak). (3.88)

By using Lemma 3.17, we get

|uAk+1
− uAk | ≤ C2

ak(sp−Q)
p [u]as,p,Ak+1∪Ak

(
−
∫
Ak+1∪Ak

|u|αdx

) 1−a
α

.

From Lemma 3.19 with ζ = (n+1−k)ε

(n+ 1
2
−k)ε

we establish

|uAk |τ

(n+ 1− k)ε
≤

|uAk+1
|τ

(n+ 1
2
− k)ε

+ C(n+ 1− k)τ−1−ε[u]aτs,p,β,Ak+1∪Ak‖|x|
µu‖(1−a)τ

Lα(Ak+1∪Ak). (3.89)

For ε > 0 and n ≥ k, we have

1

(n− k + 1)ε
− 1

(n− k + 3
2
)ε
∼ 1

(n− k + 1)1+ε
. (3.90)

By combining this fact, (3.89), (3.90) and ε = τ − 1, we get
n∑

k=m

|uAk |τ

(n+ 1− k)τ
≤ C

n∑
k=m

[u]aτs,p,β,Ak+1∪Ak‖|x|
µu‖(1−a)τ

Lα(Ak+1∪Ak). (3.91)

By using (3.88) and (3.91), we have∫
{|x|>2m}

|x|γτ

lnτ 2R
|x|
|u|τdx ≤ C

n∑
k=m

[u]aτs,p,β,Ak+1∪Ak‖|x|
µu‖(1−a)τ

Lα(Ak+1∪Ak). (3.92)
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By combining (3.65) with (3.86) and 0 ≤ β − σ ≤ s, where s = τa
p

, t = (1−a)τ
α

, we

have s+ t ≥ 1 and we get∫
{|x|>2m}

|x|γτ

lnτ 2R
|x|
|u|τdx ≤ C

n∑
k=m

[u]aτs,p,β,∪∞k=mAk‖|x|
µu‖(1−a)τ

Lα(∪∞k=mAk), (3.93)

completing the proof. �

3.6. Fractional Logarithmic inequalities. In this section, we show fractional log-
arithmic inequalities on homogeneous Lie group. By the way, we need some prelimi-
nary results. Firstly, we show weighted Hölder’s inequality on G.

Lemma 3.26. Assume that 1 < p ≤ r ≤ q ≤ ∞, a ∈ [0, 1], α ∈ R, |x|αu ∈
Lp(G) ∩ Lq(G) with

1

r
=
a

p
+

1− a
q

, (3.94)

then we have
‖|x|αu‖Lr(G) ≤ ‖|x|αu‖aLp(G)‖|x|αu‖1−a

Lq(G). (3.95)

Proof. By using Hölder’s inequality we obtain

‖|x|αu‖rLr(G) =

∫
G
|x|αr|u(x)|rdx =

∫
G

(|x|α|u(x)|)ar(|x|α|u(x)|)(1−a)rdx

≤
(∫

G
|x|αp|u(x)|pdx

)ar
p
(∫

G
|x|αq|u(x)|qdx

) (1−a)r
q

= ‖|x|αu‖arLp(G)‖|x|αu‖
(1−a)r
Lq(G) ,

(3.96)

with
ar

p
+

(1− a)r

q
= 1. (3.97)

�

Now let us show logarithmic Hölder’s inequality.

Lemma 3.27 (Logarithmic Hölder’s inequality). Suppose that |x|αu ∈ Lp(G)∩Lq(G)
with some α ∈ R, 1 < p < q ≤ ∞. Then we have∫

G

(|x|αp|u|p)
‖|x|αu‖pLp(G)

log

(
|x|αp|u|p

‖|x|αu‖pLp(G)

)
dx ≤ q

q − p
log

(
‖|x|αu‖pLq(G)

‖|x|αu‖pLp(G)

)
. (3.98)

Proof. Let us consider the following function

F

(
1

r

)
= log

(
‖|x|αu‖Lr(G)

)
. (3.99)

Firstly, we need to prove the function (3.99) is convex. By using Lemma 3.26, we
obtain

F

(
1

r

)
= log

(
‖|x|αu‖Lr(G)

)
≤ log

(
‖|x|αu‖aLp(G)‖|x|αu‖1−a

Lq(G)

)
= log

(
‖|x|αu‖aLp(G)

)
+ log

(
‖|x|αu‖1−a

Lq(G)

)
= aF

(
1

p

)
+ (1− a)F

(
1

q

)
, (3.100)
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with a ∈ [0, 1] and 1
r

= a
p

+ 1−a
q

.

Since we have

F (r) = r log

∫
G
|x|

α
r |u(x)|

1
r dx, (3.101)

the derivative of (3.101) is

F ′(r) = log

∫
G
|x|

α
r |u(x)|

1
r dx+ r

(
log

∫
G
|x|

α
r |u(x)|

1
r dx

)′
r

= log

∫
G
|x|

α
r |u(x)|

1
r dx+ r

(∫
G(|x|αu(x))

1
r dx
)′
r∫

G |x|
α
r |u(x)| 1r dx

= log

∫
G
|x|

α
r |u(x)|

1
r dx− 1

r

∫
G(|x|αu(x))

1
r log(|x|α|u(x)|)dx∫

G |x|
α
r |u(x)| 1r dx

. (3.102)

From (3.100) F (r) is convex, hence, we get

F ′(r) ≥ F (r′)− F (r)

r′ − r
, r′ > r > 0. (3.103)

With r = 1
p

and r′ = 1
q

it yields

p

∫
G ||x|

αu|p log |x|α|u|dx∫
G |x|αp|u(x)|pdx

− log

∫
G
|x|αp|u(x)|pdx

≤ qp

q − p
log

(∫
G

‖|x|αu‖Lq(G)

‖|x|αu‖Lp(G)

)
. (3.104)

We have

log

∫
G
|x|αp|u(x)|pdx =

log
∫
G |x|

αp|u(x)|pdx
∫
G |x|

αp|u(x)|pdx∫
G |x|αp|u(x)|pdx

=

∫
G |x|

αp|u(x)|p log ‖|x|αu‖pLp(G)dx∫
G |x|αp|u(x)|pdx

. (3.105)

By using last fact in (3.104) we establish logarithmic Hölder’s inequality

p

∫
G ||x|

αu|p log |x|α|u|dx∫
G |x|αp|u(x)|pdx

− log

∫
G
|x|αp|u(x)|pdx

= p

∫
G ||x|

αu|p log |x|α|u|dx∫
G |x|αp|u(x)|pdx

−
∫
G |x|

αp|u(x)|p log ‖|x|αu‖pLp(G)dx∫
G |x|αp|u(x)|pdx

=

∫
G ||x|

αu|p log |x|αp|u|pdx∫
G |x|αp|u(x)|pdx

−
∫
G |x|

αp|u(x)|p log ‖|x|αu‖pLp(G)dx∫
G |x|αp|u(x)|pdx

=

∫
G

(|x|αp|u|p)
‖|x|α|u|‖pLp(G)

log

(
|x|αp|u|p

‖|x|αu‖pLp(G)

)
≤ q

q − p
log

(
‖|x|αu‖pLq(G)

‖|x|αu‖pLp(G)

)
. (3.106)

�
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3.6.1. Fractional Logarithmic Sobolev inequality. In this subsection, we present the
fractional logarithmic Sobolev inequality on G.

Theorem 3.28 (Fractional Logarithmic Sobolev inequality). Let p > 1, s ∈ (0, 1),
Q > sp be such that p∗ = p∗(Q, s, p) = Qp

Q−sp . Let | · | be a quasi-norm on G. Then

for any u ∈ W s,p(G) and for any quasi-norm | · |, we have the fractional logarithmic
Sobolev’s inequality

∫
G

|u|p

‖u‖pLp(G)

log

(
|u|p

‖u‖pLp(G)

)
dx ≤ Q

sp
log

(
C

[u]ps,p
‖u‖pLp(G)

)
, (3.107)

where C is a positive constant independent on u.

Proof. By using weighted logarithmic Hölder’s inequality (3.98) with α = 0, we obtain

∫
G

|u|p

‖u‖pLp(G)

log

(
|u|p

‖u‖pLp(G)

)
dx ≤ q

q − p
log

(
‖u‖pLq(G)

‖u‖pLp(G)

)
. (3.108)

By the assumption we have 1 ≤ p < q = p∗ = pQ
Q−sp and by using Theorem 3.9, we

get

∫
G

|u|p

‖u‖pLp(G)

log

(
|u|p

‖u‖pLp(G)

)
dx ≤ p∗

p∗ − p
log

(
‖u‖p

Lp∗ (G)

‖u‖pLp(G)

)
(3.31)

≤ p∗

p∗ − p
log

(
C

[u]ps,p
‖u‖pLp(G)

)
. (3.109)

Here we have

p∗

p∗ − p
=

pQ
Q−sp
pQ
Q−sp − p

=

Q
Q−sp
Q

Q−sp − 1
=
Q

sp
.

�

Remark 3.29. In the Abelian (Euclidean) case G = (RN ,+), we have Q = N and
| · | = | · |E (| · |E is the Euclidean distance), if s → 1− and from (3.107) we get the
logarithmic Sobolev inequality from [36].

3.6.2. Fractional Logarithmic Hardy-Sobolev type inequality. Motivated by the above
result, in this section we prove the fractional logarithmic Hardy-Sobolev inequality
on the homogeneous Lie groups.

Theorem 3.30. Suppose that p > 1, s ∈ (0, 1), Q > 2, 0 < β < sp and Q > sp be

such that p∗s,β = p(Q−β)
Q−sp . Then for any u ∈ W s,p(G) and for any quasi-norm | · | of G,
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the fractional logarithmic Hardy-Sobolev’s type inequality:

∫
G

|x|
− βp
p∗
s,β |u|p

‖|x|
− β
p∗
s,β u‖pLp(G)

log

 |x|
− βp
p∗
s,β |u|p

‖|x|
− β
p∗
s,β u‖pLp(G)

 dx

≤ Q− β
sp− β

log

C [u]ps,p

‖|x|
− β
p∗
s,β u‖pLp(G)

 , (3.110)

where C is a positive constant and independent of u.

Proof. In the assumptions of Lemma 3.27, by taking α = − βp
p∗s,β

.Then, it is easy to see

that p < p∗s,β = q. Hence by using Lemma 3.27 and Theorem 3.10 with α = − βp
p∗s,β

,

we get

∫
G

(|x|
− βp
p∗
s,β |u|p)

‖|x|
− βp
p∗
s,β u‖pLp(G)

log

 |x|
− βp
p∗
s,β |u|p

‖|x|
− βp
p∗
s,β u‖pLp(G)

 dx

(3.98)

≤
p∗s,β

p∗s,β − p
log

‖|x|
− β
p∗
s,β u‖p

L
p∗
s,β (G)

‖|x|
− β
p∗
s,β u‖pLp(G)


(3.37)

≤
p∗s,β

p∗s,β − p
log

C [u]ps,p

‖|x|
− β
p∗
s,β u‖pLp(G)

 .

(3.111)

Finally, we compute

p∗s,β
p∗s,β − p

=

p(Q−β)
Q−sp

p(Q−β)
Q−sp − p

=
Q− β
sp− β

,

with sp > β > 0. �

Remark 3.31. In (3.110) with β = 0, we have the fractional logarithmic Sobolev
inequality on G. However, from (3.110) it does not follow the fractional logarithmic
Hardy inequality since in Lemma 3.27 we have the assumtion p < q = p∗s,β. To get
the fractional Hardy inequality we have to set β = sp, then p = q = p∗s,sp.

Remark 3.32. In the Abelian case (RN ,+), Q = N with | · | = | · |E where | · |E is the
standard Euclidean distance, combining (3.110) and (3.37) we obtain the following
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fractional logarithmic Hardy-Sobolev inequality:

∫
RN

|x|
− βp
p∗
s,β

E |u|p

‖|x|
− β
p∗
s,β

E u‖p
Lp(RN )

log

 |x|
− βp
p∗
s,β

E |u|p

‖|x|
− β
p∗
s,β

E u‖p
Lp(RN )

 dx

≤ N − β
sp− β

log

C
∫
RN
∫
RN
|u(x)−u(y)|p

|x−y|N+sp
E

dxdy

‖|x|
− β
p∗
s,β

E u‖p
Lp(RN )

 , (3.112)

for all u ∈ W s,p(RN).

Remark 3.33. In the Abelian case (RN ,+), Q = N with | · | = | · |E where | · |E is
the standard Euclidean distance and s → 1−, combining (3.110) and (3.37) we have
the following fractional logarithmic Hardy-Sobolev inequality:

∫
RN

|x|
− βp
p∗
1,β

E |u|p

‖|x|
− β
p∗
1,β

E u‖p
Lp(RN )

log

 |x|
− βp
p∗
1,β

E |u|p

‖|x|
− β
p∗
1,β

E u‖p
Lp(RN )

 dx

≤ N − β
p− β

log

C ‖∇u‖p
Lp(RN)

‖|x|
− β
p∗
1,β

E u‖p
Lp(RN )

 , (3.113)

and also, setting β = 0, we get result from [36].

3.6.3. Fractional Logarithmic Gagliardo-Nirenberg inequality. In this subsection, we
show fractional logarithmic Gagliardo-Nirenberg inequality on G.

Theorem 3.34 (Fractional Logarithmic Gagliardo-Nirenberg inequality). Under the
assumptions of Theorem 3.14 with the parameters 1 ≤ p < ∞, 1 < q < ∞ and
q ≤ p∗, there exists C = C(Q, p, s, q) > 0 such that for all measurable and compactly
supported u we have∫

G

|u|q

‖u‖qLq(G)

log

(
|u|q

‖u‖qLq(G)

)
dx ≤ 1

1− q
τ

log

(
C

[u]qs,p
‖u‖qLq(G)

)
dx. (3.114)

Proof. From the fractional Gagliardo-Nirenberg inequality (3.40) and the logarithmic
Hölder inequality (3.98), we get∫

G

|u|q

‖u‖qLq(G)

log

(
|u|q

‖u‖qLq(G)

)
dx ≤ 1

1− q
τ

log

(
‖u‖qLτ (G)

‖u‖qq

)

≤ 1

1− q
τ

log

(
C

[u]qas,p‖u‖
(1−a)q
Lq(G)

‖u‖qLq(G)

)
=

a

1− q
τ

log

(
C

[u]qs,p
‖u‖qLq(G)

)
. (3.115)

�
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Remark 3.35. In the Abelian (Euclidean) case G = (RN ,+), we have Q = N and
| · | = | · |E (| · |E is the Euclidean distance), if s → 1− and from (3.114) we get the
logarithmic Sobolev inequality in [36].

3.6.4. Fractional Logarithmic Caffarelli-Kohn-Nirenberg inequality. Now we present
the fractional logarithmic CKN type inequality on homogeneous groups.

Theorem 3.36 (Fractional Logarithmic CKN inequality). Under the assumptions of
Theorem 3.18 with

α = β = µ, 1 < q < p∗, 1 < p < Q, βp+Q > 0, βq +Q > 0, (3.116)

there exists a positive constant C such that∫
G

(|x|α|u|)q

‖|x|αu‖qLq(G)

log

(
|x|αq|u|q

‖|x|αu‖qLq(G)

)
dx ≤ 1

1− q
p∗

log

(
[u]s,p,α

‖|x|αu‖qLq(G)

)
, (3.117)

for all measurable and compactly supported u.

Proof. By taking α = β = γ in the assumptions of Theorem 3.18, we obtain that

1

τ
=

a

p∗
+

1− a
q

. (3.118)

From the last fact with q < p∗ we have q < τ . By combining these facts with weighted
logarithmic Hölder’s inequality and α = β = γ we get∫

G

|x|αq|u|q

‖|x|αu‖qLq(G)

log

(
|x|αq|u|q

‖|x|αu‖qLq(G)

)
dx ≤ τ

τ − q
log

(
‖|x|αu‖qLτ (G)

‖|x|αu‖qLq(G)

)

≤ τ

τ − q
log

(
Ca

[u]aqs,p,α‖|x|αu‖
(1−a)q
Lq(G)

‖|x|αu‖qLq(G)

)

=
aτ

τ − q
log

(
C

[u]qs,p,α
‖|x|αu‖qLq(G)

)
.

(3.119)

Since α = β = γ, we have
aτ

τ − q
=

p∗

p∗ − q
. (3.120)

�

3.7. Hardy-Littlewood-Sobolev inequality. In this section, we show Hardy-Littlewood-
Sobolev inequality. We prove this inequality by using Marcinkiewicz interpolation
theorem.

Let us consider the integral operator

Iλ,|·|u(x) =

∫
G

u(y)

|y−1x|λ
dy, 0 < λ < Q. (3.121)

Note that when Q > α > 0 and λ = Q− α we get the Riesz potential Iλ,|·| = IQ−α,|·|.
First we give a short proof of a version of the Hardy-Littlewood-Sobolev inequality
on G.
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Theorem 3.37. Let G be a homogeneous group of homogeneous dimension Q and let
| · | be an arbitrary homogeneous quasi-norm on G. Let 1 < p < q <∞, 0 < λ < Q,
1
q

= 1
p

+ λ
Q
− 1, and u ∈ Lp(G). Then we have

‖Iλ,|·|u‖Lq(G) ≤ C‖u‖Lp(G), (3.122)

where C is a positive constant independent of u.

Proof. As in the Euclidean case we will show that there is a constant C > 0, such
that

m{x : |K ∗ u(x)| > ζ} ≤ C
‖u‖qLp(G)

ζq
, (3.123)

where m is the Haar measure on G, K(x) = |x|−λ and Iλ,|·|u(x) = K ∗ u(x), where
∗ is convolution. By using the Marcinkiewicz interpolation theorem we will prove
(3.122). Let K(x) = K1(x) +K2(x), where

K1(x) :=

{
K(x), if |x| ≤ µ,

0, if |x| > µ,
and K2(x) :=

{
K(x), if |x| > µ,

0, if |x| ≤ µ,
(3.124)

µ > 0. Then, we have Iλ,|·|u(x) = K ∗ u(x) = K1 ∗ u(x) +K2 ∗ u(x), so

m{x : |K ∗ u(x)| > 2ζ} ≤ m{x : |K1 ∗ u(x)| > ζ}+m{x : |K2 ∗ u(x)| > ζ}. (3.125)

Therefore, it is enough to prove inequality (3.123) with 2ζ instead of ζ in the left-
hand side of the inequality. Without loss of generality we can assume ‖u‖Lp(G) = 1
and by using Chebychev’s and Minkowski’s inequalities, we get

m{x : |K1 ∗ u(x)| > ζ} ≤

∫
|K1∗u|>ζ |K1 ∗ u|pdx

ζp

≤
‖K1 ∗ u‖pLp(G)

ζp
≤
‖K1‖pL1(G)‖u‖

p
Lp(G)

ζp
=
‖K1‖pL1(G)

ζp
. (3.126)

By combining (2.11) and (3.124), we have

‖K1‖L1(G) =

∫
0<|x|≤µ

|x|−λdx =

∫ µ

0

rQ−1r−λdr

∫
S

|y|−λdσ(y)

= |S|
∫ µ

0

rQ−λ−1dr =
|S|
Q− λ

(rQ−λ|µ0) =
|S|
Q− λ

µQ−λ, (3.127)

where |S| is the dimensional surface measure of the unit quasi-sphere S. By using
last fact in (3.126), we get

m{x : |K1 ∗ u(x)| > ζ} ≤
(
|S|
Q− λ

)p
µ(Q−λ)p

ζp
. (3.128)



50

Then, similarly from Young’s inequality, (2.11) and the assumptions, we obtain

‖K2 ∗ u‖L∞(G) ≤ ‖K2‖Lp′ (G)‖u‖Lp(G) =

(∫ ∞
µ

r−λp
′
rQ−1dr

∫
S

|y|−λp′dσ(y)

) 1
p′

=

(
|S|

Q− λp′

) 1
p′
(∫ ∞

µ

rQ−λp
′−1dr

) 1
p′

=

(
|S|

Q− λp′

) 1
p′

(rQ−λp
′ |∞µ )

1
p′

=

(
|S|

λp′ −Q

) 1
p′

µ−
Q
q , (3.129)

since from the assumptions, we get Q−λp′
p′

= Q
p′
− λ = Q(1− 1

p
− λ

Q
) = −Q

q
. Moreover,

if
(
|S|

λp′−Q

) 1
p′
µ−

Q
q = ζ, then µ =

(
|S|

λp′−Q

)− q
Qp′

ζ−
θ
Q , so we have ‖K2 ∗ u‖L∞(G) ≤ ζ.

Hence, we have m{x : |K2 ∗ u| > ζ} = 0. From these facts with (3.125), ‖u‖Lp(G) = 1
and the assumptions we get

m{x : |K ∗ u| > 2ζ} ≤
(
|S|
Q− λ

)p
µ(Q−λ)p

ζp

=

(
|S|
Q− λ

)p( |S|
λp′ −Q

)− q(Q−λ)p
Qp′

ζ
−(Q−λ)pq

Q
−p ≤ Cζ

−(Q−λ)pq
Q

−p = Cζ( λ
Q
−1)pq−p

= Cζ( 1
q
− 1
p

)pq−p = Cζp−q−p = C
‖u‖qLp(G)

ζq
. (3.130)

For completeness, let us recall two well-known ingredients.

Definition 3.38 ([66]). Let 1 ≤ p ≤ ∞, 1 ≤ q < ∞ and V : Lp(G) → Lq(G) be a
operator, then V is called an operator of weak type (p, q) if

m{x : |V u| > ζ} ≤ C

(
‖u‖Lp(G)

ζ

)q
, ζ > 0, (3.131)

where C is a positive constant and independent by u.

Let us also recall the classical Marcinkiewicz interpolation theorem:

Theorem 3.39. Let V be sublinear operator of weak type (pk, qk) with 1 ≤ pk ≤ qk <
∞, k = 0, 1 and q0 < q1. Then V is bounded from Lp(G) to Lq(G) with

1

p
=

1− γ
p0

+
γ

p1

,
1

q
=

1− γ
q0

+
γ

q1

, (3.132)

for any 0 < γ < 1, namely,

‖V u‖Lq(G) ≤ C‖u‖Lp(G), (3.133)

for any u ∈ Lp(G) and C is a positive constant.

By using assumptions 1
q

= 1
p

+ λ
Q
− 1 < 1

p
, we have q > p. According to Definition

3.38, Iλ,|·|u is of weak type (p, q), so by using the Marcinkiewicz interpolation theorem,
we prove (3.122).

The proof of Theorem 3.37 is complete. �
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Remark 3.40. Under assumption of the Theorem 3.37 and h ∈ Lq′(G), we have the
following Hardy-Littlewood-Sobolev inequality∣∣∣∣∫

G

∫
G

u(y)h(x)

|y−1x|λ
dxdy

∣∣∣∣ ≤ C‖u‖Lp(G)‖h‖Lq′ (G), (3.134)

where C is a positive constant independent of u and h.

3.8. Stein-Weiss inequality. In this section, we show the Stein-Weiss inequality
on homogeneous Lie group. For showing this inequality we need some preliminary
results as the integral version of Hardy inequalities on general homogeneous groups
and Proposition 2.6 which is play key roles in our proof. Firstly, let us show the
integral version of Hardy inequalities on general homogeneous groups.

Theorem 3.41 ([32]). Let G be a homogeneous group of homogeneous dimension Q
and let 1 < p ≤ q < ∞. Let W (x) and U(x), be positive functions on G. Then we
have the following properties:

(1) The inequality(∫
G

(∫
B(0,|x|)

f(z)dz

)q
W (x)dx

) 1
q

≤ C1

(∫
G
fp(x)U(x)dx

) 1
p

(3.135)

holds for all f ≥ 0 a.e. on G if only if

A1 := sup
R>0

(∫
G\B(0,|x|)

W (x)dx

) 1
q
(∫

B(0,|x|)
U1−p′(x)dx

) 1
p′

<∞. (3.136)

(2) The inequality(∫
G

(∫
G\B(0,|x|)

f(z)dz

)q
W (x)dx

) 1
q

≤ C2

(∫
G
fp(x)U(x)dx

) 1
p

, (3.137)

holds for all f ≥ 0 if and only if

A2 := sup
R>0

(∫
B(0,|x|)

W (x)dx

) 1
q
(∫

G\B(0,|x|)
U1−p′(x)dx

) 1
p′

<∞. (3.138)

(3) If {Ci}2
i=1 are the smallest constants for which (3.135) and (3.137) hold, then

Ai ≤ Ci ≤ (p′)
1
p′ p

1
qAi, i = 1, 2. (3.139)

Now we formulate the Stein-Weiss inequality on G.

Theorem 3.42. Let G be a homogeneous group of homogeneous dimension Q and
let | · | be an arbitrary homogeneous quasi-norm on G. Let 0 < λ < Q, 1 < p < ∞,
α < Q

p′
, β < Q

q
, α+β ≥ 0, 1

q
= 1

p
+ α+β+λ

Q
− 1, where 1

p
+ 1

p′
= 1 and 1

q
+ 1

q′
= 1. Then

for 1 < p ≤ q <∞, we have

‖|x|−βIλ,|·|u‖Lq(G) ≤ C‖|x|αu‖Lp(G). (3.140)

where C is positive constant and independent by u.
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Proof. Let us define

‖|x|−βIλ,|·|u‖qLq(G) =

∫
G

(∫
G

u(y)

|x|β|y−1x|λ
dy

)q
dx = I1 + I2 + I3, (3.141)

where

I1 =

∫
G

(∫
B(0,

|x|
2 )

u(y)

|x|β|y−1x|λ
dy

)q

dx, (3.142)

I2 =

∫
G

(∫
B(0,2|x|)\B(0,

|x|
2 )

u(y)

|x|β|y−1x|λ
dy

)q

dx, (3.143)

and

I3 =

∫
G

(∫
G\B(0,2|x|)

u(y)

|x|β|y−1x|λdy

)q
dx. (3.144)

From Proposition 2.6 we can suppose that our quasi-norm is actually a norm.
Step 1. Firstly, let us consider I1. From Proposition 2.6 and the definition of the

quasi-norm with |y| ≤ |x|
2

, we obtain

|x| = |x−1| = |x−1yy−1|

≤ |x−1y|+ |y−1| = |y−1x|+ |y|

≤ |y−1x|+ |x|
2
.

For any λ > 0 , we get

2λ|x|−λ ≥ |y−1x|−λ.
Therefore, we get

I1 =

∫
G

(∫
B(0,

|x|
2 )

u(y)

|x|β|y−1x|λ
dy

)q

dx ≤ 2λ
∫
G

(∫
B(0,

|x|
2 )

u(y)

|x|β+λ
dy

)q

dx

= 2λ
∫
G

(∫
B(0,

|x|
2 )
u(y)dy

)q

|x|−(β+λ)qdx. (3.145)

Assume that W (x) = |x|−(β+λ)q and U(y) = |y|αp and if condition (3.136) in Theorem
3.41 is satisfied, then by (3.135) we have

I1 ≤ 2λ
∫
G

(∫
B(0,

|x|
2

)

u(y)dy

)q

|x|−(β+λ)qdx ≤ C1‖|x|αu‖qLp(G). (3.146)

Let us check condition (3.136) with W (x) = |x|−(β+λ)q and U(y) = |y|αp. By the
assumption we have α < Q

p′
, then

1

q
=

1

p
+
α + β + λ

Q
− 1 <

1

p
+

Q
p′

+ β + λ

Q
− 1 =

1

p
+

1

p′
+
β + λ

Q
− 1 =

β + λ

Q
,
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that is, Q− (β + λ)q < 0 and by the using polar decomposition (2.11):(∫
G\B(0,|x|)

W (x)dx

) 1
q

=

(∫
G\B(0,|x|)

|x|−(β+λ)qdx

) 1
q

=

(∫ ∞
R

∫
S

rQ−1r−(β+λ)qdrdσ(y)

) 1
q

=

(
|S|
∫ ∞
R

rQ−1−(β+λ)qdr

) 1
q

≤ CR
Q−(β+λ)q

q .

(3.147)

From α < Q
p′

, we get

αp(1− p′) +Q > αp(1− p′) + αp′ = αp+ αp′(1− p) = αp− αp = 0.

Finally, αp(1− p′) +Q > 0. Then, let us consider(∫
B(0,|x|)

U1−p′(x)dx

) 1
p′

=

(∫
B(0,|x|)

|x|(1−p′)αpdx
) 1

p′

=

(∫ R

0

∫
S

r(1−p′)αprQ−1drdσ(y)

) 1
p′

≤ C

(
|S|
∫ R

0

r(1−p′)αp+Q−1dr

) 1
p′

≤ CR
(1−p′)αp+Q

p′ = CR
Q−αp′
p′ . (3.148)

Moreover, the assumptions imply

A1 = sup
R>0

(∫
G\B(0,|x|)

W (x)dx

) 1
q
(∫

B(0,|x|)
U1−p′(x)dx

) 1
p′

≤ CR
Q−(β+λ)q

q
+Q−αp′

p′

= CRQ( 1
q
− 1
p
−α+β+λ

Q
+1) = C <∞,

where C = C(α, β, p, λ) is a positive constant. From (3.135), we get

I1 ≤ C

∫
G

(∫
B(0,

|x|
2 )
u(y)dy

)q

|x|−(β+λ)qdx ≤ C1‖|x|αu‖qLp(G). (3.149)

Step 2. Similarly with the previous case I1, now we consider I3. From 2|x| ≤ |y|,
we have

|y| = |y−1| = |y−1xx−1| ≤ |y−1x|+ |x|

≤ |y−1x|+ |y|
2
,

that is,
|y|
2
≤ |y−1x|.

Then, if condition (3.138) with W (x) = |x|−βq and U(y) = |y|(α+λ)p is satisfied, then
we have

I3 =

∫
G

(∫
G\B(0,2|x|)

u(y)

|x|β|y−1x|λ
dy

)q
dx ≤ C

∫
G

(∫
G\B(0,2|x|)

u(y)

|x|β|y|λ
dy

)q
dx

= C

∫
G

(∫
G\B(0,2|x|)

u(y)|y|−λdy
)q
|x|−βqdx ≤ C‖|x|αu‖qLp(G). (3.150)
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Now let us verify condition (3.138). Then, we get(∫
B(0,|x|)

W (x)dx

) 1
q

=

(∫
B(0,|x|)

|x|−βqdx
) 1

q

=

(∫ R

0

∫
S

r−βqrQ−1drdσ(y)

) 1
q

≤ CR
Q−βq
q , (3.151)

where Q− βq > 0, and(∫
G\B(0,|x|)

U1−p′(x)dx

) 1
p′

=

(∫
G\B(0,|x|)

|x|(α+λ)(1−p′)pdx

) 1
p′

=

(∫ ∞
R

∫
S

rQ−1r(α+λ)(1−p′)pdrdσ(y)

) 1
p′

≤ CR
Q−p′(α+λ)

p′ , (3.152)

where from β < Q
q

, we get Q− p′(α + λ) < 0.

By using these facts we have

A2 := sup
R>0

(∫
B(0,|x|)

W (x)dx

) 1
q
(∫

G\B(0,|x|)
U1−p′(x)dx

) 1
p′

≤ CR
Q−p′(α+λ)

p′ +Q−βq
q

= CR
Q
p′−(α+β+λ)+Q

q = CR
Q( 1

p′−
α+β+λ
Q

+ 1
q

)
= C <∞, (3.153)

where C = C(α, β, p, λ) is a positive constant. Then we establish

I3 =

∫
G

(∫
G\B(0,2|x|)

u(y)

|x|β|y−1x|λ
dy

)q
dx ≤ C‖|x|αu‖qLp(G). (3.154)

Step 3. Let us estimate I2 now.

Case 1: p < q. By |x|
2
< |y| < 2|x|, we get

|y−1x|
2
≤ |x|+ |y|

2
=
|x|
2

+
|y|
2
<

3

2
|y|,

that is,
|y−1x| < 3|y|.

For all α + β ≥ 0, we have

|y−1x|α+β < 3α+β|y|α+β = 3α+β|y|α|y|β ≤ 3α+β2|β||x|β|y|α.
Hence,

I2 =

∫
G

(∫
B(0,2|x|)\B(0,

|x|
2 )

u(y)

|x|β|y−1x|λ
dy

)q

dx

≤ C

∫
G

(∫
B(0,2|x|)\B(0,

|x|
2 )

|y|αu(y)

|y−1x|α+β+λ
dy

)q

dx

≤ C

∫
G

(∫
G

|y|αu(y)

|y−1x|α+β+λ
dy

)q
dx = C‖Iλ+α+β,|·|ũ‖qLq(G),

where ũ(x) = |x|αu(x).
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From the assumption 1
q
− 1

p
= λ+α+β

Q
− 1 < 0, we get Q > λ+ α + β and by using

Theorem 3.37 with p < q, we obtain

I2 ≤ C‖Iλ+α+β,|·|ũ‖qLq(G) ≤ C‖ũ‖qLp(G) = C‖|x|αu‖qLp(G). (3.155)

Case 2: p = q. Let us decompose I2 as

I2 =
∑
k∈Z

∫
2k≤|x|≤2k+1

(∫
B(0,2|x|)\B(0,

|x|
2 )

u(y)

|x|β|y−1x|λ
dy

)p

dx. (3.156)

By |x| ≤ 2|y| ≤ 4|x| and 2k ≤ |x| ≤ 2k+1, we get 2k−1 ≤ |y| ≤ 2k+2 and 0 ≤
|y−1x| ≤ 3|x| ≤ 3 · 2k+1.

By combining Young’s inequality with 1
p

+ 1
r

= 1 + 1
q

(our case p = q, hence r = 1),
we get

I2 =
∑
k∈Z

∫
2k≤|x|≤2k+1

(∫
B(0,2|x|)\B(0,

|x|
2 )

u(y)

|x|β|y−1x|λ
dy

)p

dx

=
∑
k∈Z

∫
2k≤|x|≤2k+1

(∫
B(0,2|x|)\B(0,

|x|
2 )

u(y)

|y−1x|λ
dy

)p
dx

|x|βp

≤
∑
k∈Z

2−βpk‖u · χ{2k−1≤|y|≤2k+2} ∗ |x|−λ‖pLp(G)

≤
∑
k∈Z

2−βpk‖|x|−λ · χ{0≤|y|≤3·2k+1}‖pL1(G)‖u · χ{2k−1≤|y|≤2k+2}‖pLp(G)

≤ C
∑
k∈Z

2(Q−λ−β)kp‖u · χ{2k−1≤|y|≤2k+2}‖pLp(G) = C
∑
k∈Z

2αkp‖u · χ{2k−1≤|y|≤2k+2}‖pLp(G)

= C
∑
k∈Z

‖2α(k−1)u · χ{2k−1≤|y|≤2k+2}‖pLp(G) ≤ C
∑
k∈Z

‖|y|αu · χ{2k−1≤|y|≤2k+2}‖pLp(G)

= C‖|x|αu‖pLp(G).

Theorem 3.42 is proved. �

Remark 3.43. With assumptions Theorem 3.42 and h ∈ Lq
′
(G), we have the fol-

lowing Stein-Weiss inequality∣∣∣∣∫
G

u(y)h(x)

|x|β|y−1x|λ|y|α
dxdy

∣∣∣∣ ≤ C‖u‖Lp(G)‖h‖Lq′ (G), (3.157)

where C is a positive constant independent of u and h.

Remark 3.44. In inequality (3.140) with α = 0 we get the weighted Hardy-Littlewood-
Sobolev inequality established in [32, Theorem 4.1]. Thus, by setting α = β = 0 we get
Hardy-Littlewood-Sobolev inequality on the homogeneous Lie groups. In the Abelian
(Euclidean) case G = (RN ,+), we have Q = N and | · | can be any homogeneous
quasi-norm on RN , so with the usual Euclidean distance, i.e. | · | = ‖ · ‖E, Theorem
3.42 gives the classical result of Stein and Weiss.
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3.9. Logarithmic Sobolev-Folland-Stein inequality. In this section, we present
the logarithmic Sobolev-Folland-Stein inequality on stratified groups. Let us recall
the well-known Sobolev-Folland-Stein inequality.

Theorem 3.45. Let G be a stratified Lie group and Ω ⊂ G be an open set. Then
there exists a constant CS = CS(G) > 0 such that for all u ∈ C∞0 (Ω) we have

‖u‖Lp∗ (Ω) ≤ CS

(∫
Ω

|∇Hu|pdx
) 1

p

, 1 < p < Q, (3.158)

where p∗ = Qp
Q−p . Here ∇H is the horizontal gradient and Q is the homogeneous

dimension of G.

Now let us state the logarithmic Sobolev-Folland-Stein inequality on stratified
groups.

Theorem 3.46. Suppose that p∗ = 2Q
Q−2

and a > 0. Then

2

∫
G
|u(x)|2 ln

|u(x)|
‖u‖L2(G)

dx+Q(1 + ln a)‖u‖2
L2(G) ≤ QC2

Sa‖∇Gu‖2
L2(G), (3.159)

where u ∈ S1,2
0 (G).

Proof. By a direct calculation with ε > 0, we have

2

∫
G
|u(x)|2 ln

|u(x)|
‖u‖L2(G)

dx =
1

ε

∫
G
|u(x)|2 ln

(
|u(x)|
‖u‖L2(G)

)ε
dx

=
‖u‖2

L2(G)

ε

∫
G

|u(x)|2

‖u‖2
L2(G)

ln

(
|u(x)|
‖u‖L2(G)

)ε
dx.

(3.160)

From Jensen’s inequality we obtain the upper estimate for the integral:

2

∫
G
|u(x)|2 ln

|u(x)|
‖u‖L2(G)

dx =
2‖u‖2

L2(G)

ε

∫
G

|u(x)|2

‖u‖2
L2(G)

ln

(
|u(x)|
‖u‖L2(G)

)ε
dx

≤
2‖u‖2

L2(G)

ε
ln

(∫
G

|u(x)|
‖u‖L2(G)

dx

)ε+1

=
2(ε+ 1)‖u‖2

L2(G)

ε
ln
‖u‖2

L2ε+2(G)

‖u‖2
L2(G)

.

(3.161)
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From the inequality lnx ≤ ax−ln(a)−1 for all a, x > 0, and by choosing 2ε+2 = 2Q
Q−2

as well as using the Sobolev-Folland-Stein inequality, we get

2

∫
G
|u(x)|2 ln

|u(x)|
‖u‖L2(G)

dx ≤
2(ε+ 1)‖u‖2

L2(G)

ε
ln
‖u‖2

L2ε+2(G)

‖u‖2
L2(G)

≤
2(ε+ 1)‖u‖2

L2(G)

ε

(
a
‖u‖2

L2ε+2(G)

‖u‖2
L2(G)

− (ln(a) + 1)

)

=
2(ε+ 1)

ε

(
a‖u‖2

L2ε+2(G) − (ln(a) + 1)‖u‖2
L2(G)

)
≤ 2(ε+ 1)

ε

(
aC2

S‖∇Gu‖2
L2(G) − (ln(a) + 1)‖u‖2

L2(G)

)
=

2Q
Q−2

2
Q−2

(
aC2

S‖∇Gu‖2
L2(G) − (ln(a) + 1)‖u‖2

L2(G)

)
= Q

(
aC2

S‖∇Gu‖2
L2(G) − (ln(a) + 1)‖u‖2

L2(G)

)
.

(3.162)

It yields that

2

∫
G
|u(x)|2 ln

|u(x)|
‖u‖L2(G)

dx+Q(ln(a) + 1)‖u‖2
L2(G) ≤ C2

SQa‖∇Gu‖2
L2(G). (3.163)

�
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4. Reverse Inequalities

In this chapter, we show reverse integral Hardy inequality on metric measure space.
We show the reverse integral Hardy inequality in two cases. In the first case we
consider the case q < 0 and p ∈ (0, 1). In the second case, we consider the case
−∞ < q ≤ p < 0. For the both cases we also obtain conjugate reverse integral
Hardy inequality. In the first case, as consequences we show the reverse integral
Hardy inequality for the homogeneous Lie groups, hyperbolic space and Cartan-
Hadamard manifolds. Also, we show reverse Hardy-Littlewood-Sobolev and Stein-
Weiss inequalities for the both cases. In addition, we obtain Hardy, Lp-Sobolev
and Lp-Caffarelli-Kohn-Nirenberg inequalities on homogeneous groups with radial
derivative.

Firstly, we need to give some preliminary results of this chapter. Let us recall
briefly the reverse Hölder’s inequality.

Theorem 4.1 ([35], Theorem 2.12, p. 27). Let X be metric measure space. Let
p ∈ (0, 1), so that p′ = p

p−1
< 0. If non-negative functions satisfy f ∈ Lp(X) and

0 <
∫
X g

p′(x)dx < +∞, we have

∫
X
f(x)g(x)dx ≥

(∫
X
fp(x)dx

) 1
p
(∫

X
gp
′
(x)dx

) 1
p′

. (4.1)

Let us give the reverse integral Minkowski inequality (or a continuous version of
reverse Minkowski inequality) with q < 0 on metric measure space.

Theorem 4.2. Let X,Y be metric measure spaces and let F = F (x, y) ∈ X×Y be a
non-negative measurable function. Then we have

[∫
X

(∫
Y
F (x, y)dy

)q
dx

] 1
q

≥
∫
Y

(∫
X
F q(x, y)dx

) 1
q

dy, q < 0. (4.2)

Proof. Let us consider the following function:

A(x) :=

∫
Y
F (x, y)dy, (4.3)

so we have

Aq(x) =

(∫
Y
F (x, y)dy

)q
. (4.4)
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By integrating over X both sides and by using reverse Hölder’s inequality (Theorem
4.1), we obtain∫

X
Aq(x)dx =

∫
X
Aq−1(x)A(x)dx

=

∫
X
Aq−1(x)

∫
Y
F (x, y)dydx

=

∫
Y

∫
X
Aq−1(x)F (x, y)dxdy

(4.1)

≥
∫
Y

(∫
X
Aq−1 q

q−1 (x)dx

) q−1
q
(∫

X
F q(x, y)dx

) 1
q

dy

=

(∫
X
Aq(x)dx

) q−1
q
∫
Y

(∫
X
F q(x, y)dx

) 1
q

dy.

(4.5)

From this, we get[∫
X

(∫
Y
F (x, y)dy

)q
dx

] 1
q

≥
∫
Y

(∫
X
F q(x, y)dx

) 1
q

dy, (4.6)

proving (4.2). �

Remark 4.3. In our sense, the negative exponent q < 0 of 0, we understand in the
following form:

0q = (+∞)−q = +∞, and 0−q = (+∞)q = 0. (4.7)

We denote by B(a, r) the ball in X with centre a and radius r, i.e

B(a, r) := {x ∈ X : d(x, a) < r},

where d is the metric on X. Once and for all we will fix some point a ∈ X, and we
will write

|x|a := d(a, x). (4.8)

4.1. Reverse integral Hardy inequality with q < 0 and p ∈ (0, 1) on the
metric measure space. Now we prove the reverse integral Hardy inequality on a
metric measure space.

Theorem 4.4 (Reverse integral Hardy inequality). Suppose that p ∈ (0, 1) and q < 0.
Let X be a metric measure space with a polar decomposition at a ∈ X. Assume that
u, v > 0 are locally integrable functions on X. Then the inequality[∫

X

(∫
B(a,|x|a)

f(y)dy

)q
u(x)dx

] 1
q

≥ C(p, q)

(∫
X
fp(x)v(x)dx

) 1
p

(4.9)

holds for some C(p, q) > 0 and for all non-negative real-valued measurable functions
f , if and only if

0 < D1 := inf
x 6=a

[(∫
X\B(a,|x|a)

u(y)dy

) 1
q
(∫

B(a,|x|a)

v1−p′(y)dy

) 1
p′
]
. (4.10)
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Moreover, the biggest constant C(p, q) in (4.9) has the following relation to D1:

D1 ≥ C(p, q) ≥
(

p′

p′ + q

)− 1
q
(

q

p′ + q

)− 1
p′

D1. (4.11)

Proof. Let us divide proof of this theorem in several steps.

Step 1. Let us denote g(x) := f(x)v
1
p (x). Let 1

p
+ 1

p′
= 1, α ∈

(
0,− 1

p′

)
and

z(x) = v−
1
p (x). Let us denote,

V (x) :=

∫
B(a,|x|a)

v−
p′
p (y)dy =

∫
B(a,|x|a)

zp
′
(y)dy, (4.12)

H1(s) :=

∫
∑
s

λ(s, σ)g(s, σ)z(s, σ)dσ, (4.13)

H2(s) :=

∫
∑
s

λ(s, σ)zp
′
(s, σ)V αp′(s, σ)dσ, (4.14)

H3(s) :=

∫
∑
s

λ(s, σ)gp(s, σ)V −αp(s, σ)dσ, (4.15)

U(r) :=

∫
∑
r

λ(r, ω)u(r, ω)dω. (4.16)

By using reverse Hölder’s inequality (Theorem 4.1) with polar decomposition (2.31),
we compute

A : =

∫
X

(∫
B(a,|x|a)

f(y)dy

)q
u(x)dx =

∫
X

(∫
B(a,|x|a)

g(y)z(y)dy

)q
u(x)dx

=

∫
X

(∫
B(a,|x|a)

g(y)z(y)dy

)p(∫
B(a,|x|a)

g(y)z(y)dy

)q−p
u(x)dx

=

∫
X

(∫
B(a,|x|a)

g(y)V −α(y)V α(y)z(y)dy

)p(∫
B(a,|x|a)

g(y)z(y)dy

)q−p
u(x)dx

≥
∫
X

(∫
B(a,|x|a)

gp(y)V −αp(y)dy

)(∫
B(a,|x|a)

zp
′
(y)V αp′(y)dy

) p
p′

×
(∫

B(a,|x|a)

g(y)z(y)dy

)q−p
u(x)dx

=

∫ ∞
0

U(r)

(∫ r

0

H1(s)ds

)q−p(∫ r

0

H2(s)ds

) p
p′
(∫ r

0

H3(s)ds

)
dr.

(4.17)
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Let us denote by H̃2(s) :=
∫∑

s
λ(s, σ)zp

′
(s, σ)dσ. Then we obtain

(∫ r

0

H2(s)ds

) p
p′

=

(∫ r

0

∫
∑
s

λ(s, σ)zp
′
(s, σ)V αp′(s, σ)dsdσ

) p
p′

=

∫ r

0

∫
∑
s

λ(s, σ)zp
′
(s, σ)

(∫ s

0

∫
∑
ρ

λ(ρ, σ1)zp
′
(ρ, σ1)dρdσ1

)αp′

dsdσ


p
p′

=

(∫ r

0

H̃2(s)

(∫ s

0

H̃2(ρ)dρ

)αp′
ds

) p
p′

(4.18)

=

(∫ r

0

(∫ s

0

H̃2(ρ)dρ

)αp′
ds

(∫ s

0

H̃2(ρ)dρ

)) p
p′

1+αp′>0
=

1

(1 + αp′)
p
p′

((∫ s

0

H̃2(ρ)dρ

)1+αp′ ∣∣r
0

) p
p′

1+αp′>0
=

1

(1 + αp′)
p
p′

(∫ r

0

H̃2(ρ)dρ

) p(1+αp′)
p′

=
V

p(1+αp′)
p′

1 (r)

(1 + αp′)
p
p′
,

where V1(r) =
∫ r

0
H̃2(ρ)dρ. By combining this fact and reverse Hölder’s inequality

with p
q

+ q−p
q

= 1, we get

A ≥
∫ ∞

0

(∫ r

0

H3(s)ds

)
U(r)

(∫ r

0

H1(s)ds

)q−p(∫ r

0

H2(s)ds

) p
p′

dr

(4.18)
=

1

(1 + αp′)
p
p′

∫ ∞
0

(∫ r

0

H3(s)ds

)
U(r)

(∫ r

0

H1(s)ds

)q−p
V

p(1+αp′)
p′

1 (r)dr

=
1

(1 + αp′)
p
p′

∫ ∞
0

U
p
q (r)

(∫ r

0

H3(s)ds

)
V

p(1+αp′)
p′

1 (r)

(∫ r

0

H1(s)ds

)q−p
U

q−p
q dr

≥ 1

(1 + αp′)
p
p′

(∫ ∞
0

(∫ r

0

H3(s)ds

) q
p

U(r)V
q(1+αp′)

p′
1 (r)dr

) p
q

×
(∫ ∞

0

(∫ r

0

H1(s)ds

)q
U(r)dr

) q−p
q
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=
1

(1 + αp′)
p
p′

(∫ ∞
0

U(r)

(∫ r

0

H3(s)ds

) q
p

V
q(1+αp′)

p′
1 (r)dr

) p
q

×
(∫

X

(∫
B(a,|x|a)

g(y)z(y)dy

)q
u(x)dx

) q−p
q

=
A

q−p
q

(1 + αp′)
p
p′

(∫ ∞
0

U(r)

(∫ r

0

H3(s)ds

) q
p

V
q(1+αp′)

p′
1 (r)dr

) p
q

.

Therefore,

A
p
q ≥ 1

(1 + αp′)
p
p′

(∫ ∞
0

U(r)

(∫ r

0

H3(s)ds

) q
p

V
q(1+αp′)

p′
1 (r)dr

) p
q

.

By using the reverse Minkowski inequality (continuous version of reverse Minkowski
inequality) with exponent q

p
< 0, then we obtain(∫ ∞

0

U(r)

(∫ r

0

H3(s)ds

) q
p

V
q(1+αp′)

p′
1 (r)dr

) p
q

=

(∫ ∞
0

(∫ r

0

U
p
q (r)H3(s)V

(1+αp′)p
p′ (r)ds

) q
p

dr

) p
q

=

(∫ ∞
0

(∫ ∞
0

U
p
q (r)H3(s)V

(1+αp′)p
p′

1 (r)χ{s<r}ds

) q
p

dr

) p
q

(4.2)

≥
∫ ∞

0

H3(s)

(∫ ∞
s

U(r)V
q(1+αp′)

p′
1 (r)dr

) p
q

ds

=

∫
X
gp(y)V −αp(y)

(∫
X\B(a,|y|a)

u(x)V
q(1+αp′)

p′ (x)dx

) p
q

dy

≥ Dp(α)

∫
X
gp(y)dy,

where D(α) := inf
x 6=a

D(x, α) = inf
x 6=a

V −α(x)

(∫
X\B(a,|x|a)

u(y)V
q(1+αp′)

p′ (y)dy

) 1
q

and χ is

the cut-off function. Then we have

A
p
q =

(∫
X

(∫
B(a,|x|a)

f(y)dy

)q
u(x)dx

) p
q

≥ Dp(α)

(1 + αp′)
p
p′

∫
X
gp(y)dy

=
Dp(α)

(1 + αp′)
p
p′

∫
X
fp(y)v(y)dy.

Step 2. Let us define D1 in the following form:

0 < D1 = inf
x 6=a

[(∫
X\B(a,|x|a)

u(x)dx

) 1
q
(∫

B(a,|x|a)

v1−p′(y)dy

) 1
p′
]
. (4.19)
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Let us note a relation between V and V1,

V (x) =

∫
B(a,|x|a)

v−
p′
p dx =

∫
B(a,|x|a)

zp
′
dx

=

∫ |x|a
0

∫
∑
r

zp
′
(r, ω)λ(r, ω)drdω (4.20)

=

∫ |x|a
0

H̃2(r)dr

=: V1(|x|a),

where, as before, H̃2(r) =
∫∑

r
zp
′
(r, ω)λ(r, ω)dω. Then let us calculate the following

integral:

I =

∫
X\B(a,|x|a)

u(y)V
q(1+αp′)

p′ (y)dy =

∫ ∞
|x|a

∫
∑
r

λ(r, ω)u(r, ω)V
q(1+αp′)

p′
1 (r)drdω

=

∫ ∞
|x|a

U(r)V
q(1+αp′)

p′
1 (r)dr =

∫ ∞
|x|a

V
q(1+αp′)

p′
1 (r)dr

(
−
∫ ∞
r

U(s)ds

)
= −V

q(1+αp′)
p′

1 (r)

∫ ∞
r

U(s)ds
∣∣∞
|x|a

+
q(1 + αp′)

p′

∫ ∞
|x|a

(∫ ∞
r

U(s)ds

)
V

q(1+αp′)
p′ −1

1 (r)dV1(r)

q
p′>0

= V
q(1+αp′)

p′
1 (|x|a)

∫ ∞
|x|a

U(s)ds

+
q(1 + αp′)

p′

∫ ∞
|x|a

(∫ ∞
r

U(s)ds

)
V

q(1+αp′)
p′ −1

1 (r)dV1(r)

= V
q
p′

1 (|x|a)
(∫ ∞
|x|a

U(s)ds

)
V αq

1 (|x|a)

+
q(1 + αp′)

p′

∫ ∞
|x|a

(∫ ∞
r

U(s)ds

)
V

q
p′

1 (r)V αq−1
1 (r)dV1(r)

≤ Dq
1V

αq
1 (|x|a) +

q(1 + αp′)Dq
1

p′

∫ ∞
|x|a

V αq−1
1 (r)dV1(r)

= Dq
1V

αq
1 (|x|a) +

(1 + αp′)Dq
1

αp′
V αq

1 (r)
∣∣∞
|x|a

= Dq
1V

αq
1 (|x|a) + lim

r→∞

(1 + αp′)Dq
1

αp′
V αq

1 (r)− (1 + αp′)Dq
1

αp′
V αq

1 (|x|a)

(1+αp′)Dq1
αp′ <0

≤ Dq
1V

αq
1 (|x|a)−

(1 + αp′)Dq
1

αp′
V αq

1 (|x|a)

(4.20)
= − 1

αp′
Dq

1V
αq(x).

(4.21)
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Then we get I = Dq(x, α)V αq(x) ≤ − 1
αp′
Dq

1V
αq(x). Hence,

D(x, α) ≥ (−αp′)−
1
qD1,

it means

D(α) ≥ (−αp′)−
1
qD1.

Finally, we obtain

A
1
q ≥ D1(−αp′)−

1
q

(1 + αp′)
1
p′

(∫
X
fp(y)v(y)dy

) 1
p

.

Let us consider the function k(α) := (−αp′)−
1
q

(1+αp′)
1
p′

= (−αp′)−
1
q (1 + αp′)

− 1
p′ , where α ∈(

0,− 1
p′

)
. Firstly, let us find extremum of this function. After some calculation we

have

dk(α)

dα
= −1

q
(−p′)(−αp′)−

1
q
−1(1 + αp′)

− 1
p′

+

(
− 1

p′

)
p′(1 + αp′)

− 1
p′−1

(−αp′)−
1
q

= p′(−αp′)−
1
q
−1(1 + αp′)

− 1
p′−1

(
(1 + αp′)

q
+ α

)
=
p′

q
(−αp′)−

1
q
−1(1 + αp′)

− 1
p′−1

(α(p′ + q) + 1)

= 0,

(4.22)

it implies that its solution is

α1 = − 1

p′ + q
∈
(

0,− 1

p′

)
.
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After taking the second derivative of k(α) at the point α1 and by denoting k1(α) =

(−αp′)−
1
q
−1(1 + αp′)

− 1
p′−1

, we get

d2k(α)

dα2

∣∣
α=α1

=

(
p′

q
(−αp′)−

1
q
−1(1 + αp′)

− 1
p′−1

(α(p′ + q) + 1)

)′ ∣∣
α=α1

=
p′

q
(k1(α) (α(p′ + q) + 1))

′ ∣∣
α=α1

=
p′

q

(
dk1(α)

dα
(α(p′ + q) + 1) + (p′ + q)k1(α)

) ∣∣
α=α1

=
p′

q

dk1(α)

dα

∣∣
α=α1

(α1(p′ + q) + 1)︸ ︷︷ ︸
=0

+(p′ + q)k1(α1)


=
p′(p′ + q)

q
k1(α1) =

p′(p′ + q)

q
(−α1p

′)−
1
q
−1(1 + α1p

′)
− 1
p′−1

=
p′(p′ + q)

q︸ ︷︷ ︸
<0

(
p′

p′ + q

)− 1
q
−1

︸ ︷︷ ︸
>0

(
q

p′ + q

)− 1
p′−1

︸ ︷︷ ︸
>0

< 0.

(4.23)

It means, function k(α) has supremum at the point α = α1. Then, the biggest

constant has the following relationship C(p, q) ≥
(

p′

p′+q

)− 1
q
(

q
p′+q

)− 1
p′
D1.

Step 3. Let us give a necessity condition of inequality (4.9). By using (4.9) and

f(x) = v−
p′
p (x)χ{(0,t)}(|x|a), we compute

C(p, q) ≤
[∫

X

(∫
B(a,|x|a)

f(y)dy

)q
u(x)dx

] 1
q
[∫

X
fp(y)v(y)dx

]− 1
p

=

[∫
X

(∫
|y|a≤t

v1−p′(y)dy

)q
u(x)dx

] 1
q
[∫
|y|a≤t

v−p
′
(y)v(y)dx

]− 1
p

q<0

≤
[∫
|x|a≥t

(∫
|y|a≤t

v1−p′(y)dy

)q
u(x)dx

] 1
q
[∫
|y|a≤t

v−p
′
(y)v(y)dx

]− 1
p

=

[∫
|x|a≥t

u(x)dx

] 1
q
[∫
|y|a≤t

v−p
′
(y)v(y)dx

] 1
p′

,

(4.24)

which gives D1 ≥ C(p, q). �

Let us give conjugate reverse integral Hardy inequality.

Theorem 4.5 (Conjugate reverse integral Hardy inequality). Suppose that p ∈ (0, 1)
and q < 0. Let X be a metric measure space with a polar decomposition at a. Assume
that u, v > 0 are locally integrable functions on X. Then the inequality[∫

X

(∫
X\B(a,|x|a)

f(y)dy

)q
u(x)dx

] 1
q

≥ C(p, q)

(∫
X
fp(x)v(x)dx

) 1
p

(4.25)
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holds for some C(p, q) > 0 and for all non-negative real-valued measurable functions
f , if only if

0 < D2 := inf
x 6=a

[(∫
B(a,|x|a)

u(y)dy

) 1
q
(∫

X\B(a,|x|a)

v1−p′(y)dy

) 1
p′
]
. (4.26)

Moreover, the biggest constant C(p, q) in (4.25) has the following relation to D2:

D2 ≥ C(p, q) ≥
(

p′

p′ + q

)− 1
q
(

q

p′ + q

)− 1
p′

D2. (4.27)

Proof. Proof of this theorem is similar to the previous case. Let us divide proof of
this theorem in several steps.

Step 1. Let us denote g(x) := f(x)v
1
p (x). Let 1

p
+ 1

p′
= 1, α ∈

(
0,− 1

p′

)
and

z(x) = v−
1
p (x). Let us denote,

G(x) :=

∫
X\B(a,|x|a)

v−
p′
p (y)dy =

∫
X\B(a,|x|a)

zp
′
(y)dy.

By using reverse Hölder’s inequality (Theorem 4.1), we get

B : =

∫
X

(∫
X\B(a,|x|a)

f(y)dy

)q
u(x)dx =

∫
X

(∫
X\B(a,|x|a)

g(y)z(y)dy

)q
u(x)dx

=

∫
X

(∫
X\B(a,|x|a)

g(y)z(y)dy

)p(∫
X\B(a,|x|a)

g(y)z(y)dy

)q−p
u(x)dx

=

∫
X

(∫
X\B(a,|x|a)

g(y)G−α(y)Gα(y)z(y)dy

)p(∫
X\B(a,|x|a)

g(y)z(y)dy

)q−p
u(x)dx

≥
∫
X

(∫
X\B(a,|x|a)

gp(y)G−αp(y)dy

)(∫
X\B(a,|x|a)

zp
′
(y)Gαp′(y)dy

) p
p′

×
(∫

X\B(a,|x|a)

g(y)z(y)dy

)q−p
u(x)dx

=

∫ ∞
0

U(r)

(∫ ∞
r

H1(s)ds

)q−p(∫ ∞
r

H2(s)ds

) p
p′
(∫ ∞

r

H3(s)ds

)
dr,

(4.28)
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where U(r), Hi(s), i = 1, 2, 3, are defined in (4.13)-(4.16). Let us denote by H̃2(s) :=∫∑
s
λ(s, σ)zp

′
(s, σ)dσ. Then we have

(∫ ∞
r

H2(s)ds

) p
p′

=

(∫ ∞
r

∫
∑
s

λ(s, σ)zp
′
(s, σ)V αp′(s, σ)dsdσ

) p
p′

=

∫ ∞
r

∫
∑
s

λ(s, σ)zp
′
(s, σ)

(∫ ∞
r

∫
∑
ρ

λ(ρ, σ1)zp
′
(ρ, σ1)dρdσ1

)αp′

dsdσ


p
p′

=

(∫ ∞
r

H̃2(s)

(∫ ∞
s

H̃2(ρ)dρ

)αp′
ds

) p
p′

(4.29)

=

(∫ ∞
r

(∫ ∞
s

H̃2(ρ)dρ

)αp′
ds

(
−
∫ ∞
s

H̃2(ρ)dρ

)) p
p′

=

(
−
∫ ∞
r

(∫ ∞
s

H̃2(ρ)dρ

)αp′
ds

(∫ ∞
s

H̃2(ρ)dρ

)) p
p′

1+αp′>0
=

1

(1 + αp′)
p
p′

(
−
(∫ ∞

s

H̃2(ρ)dρ

)1+αp′ ∣∣∞
r

) p
p′

1+αp′>0
=

1

(1 + αp′)
p
p′

(∫ ∞
r

H̃2(ρ)dρ

) p(1+αp′)
p′

=
G

p(1+αp′)
p′

1 (r)

(1 + αp′)
p
p′
,

where G1(r) =
∫ r

0
H̃2(ρ)dρ. By combining this fact and reverse Hölder’s inequality

with p
q

+ q−p
q

= 1, we get

B ≥
∫ ∞

0

(∫ ∞
r

H3(s)ds

)
U(r)

(∫ ∞
r

H1(s)ds

)q−p(∫ ∞
r

H2(s)ds

) p
p′

dr

(4.29)
=

1

(1 + αp′)
p
p′

∫ ∞
0

(∫ ∞
r

H3(s)ds

)
U(r)

(∫ ∞
r

H1(s)ds

)q−p
G

p(1+αp′)
p′

1 (r)dr

=
1

(1 + αp′)
p
p′

∫ ∞
0

U
p
q (r)

(∫ ∞
r

H3(s)ds

)
G

p(1+αp′)
p′

1 (r)

(∫ ∞
r

H1(s)ds

)q−p
U

q−p
q dr

≥ 1

(1 + αp′)
p
p′

(∫ ∞
0

(∫ ∞
r

H3(s)ds

) q
p

U(r)G
q(1+αp′)

p′
1 (r)dr

) p
q

×
(∫ ∞

0

(∫ ∞
r

H1(s)ds

)q
U(r)dr

) q−p
q
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=
1

(1 + αp′)
p
p′

(∫ ∞
0

U(r)

(∫ ∞
r

H3(s)ds

) q
p

G
q(1+αp′)

p′
1 (r)dr

) p
q

×
(∫

X

(∫
X\B(a,|x|a)

g(y)z(y)dy

)q
u(x)dx

) q−p
q

=
B

q−p
q

(1 + αp′)
p
p′

(∫ ∞
0

U(r)

(∫ ∞
r

H3(s)ds

) q
p

G
q(1+αp′)

p′
1 (r)dr

) p
q

.

Therefore,

B
p
q ≥ 1

(1 + αp′)
p
p′

(∫ ∞
0

U(r)

(∫ ∞
r

H3(s)ds

) q
p

G
q(1+αp′)

p′
1 (r)dr

) p
q

. (4.30)

From reverse Minkowski inequality with exponent q
p
< 0 , we obtain(∫ ∞

0

U(r)

(∫ ∞
r

H3(s)ds

) q
p

G
q(1+αp′)

p′
1 (r)dr

) p
q

=

(∫ ∞
0

(∫ ∞
r

U
p
q (r)H3(s)G

(1+αp′)p
p′ (r)ds

) q
p

dr

) p
q

=

(∫ ∞
0

(∫ ∞
0

U
p
q (r)H3(s)G

(1+αp′)p
p′

1 (r)χ{r<s}ds

) q
p

dr

) p
q

(4.2)

≥
∫ ∞

0

H3(s)

(∫ s

0

U(r)G
q(1+αp′)

p′
1 (r)dr

) p
q

ds

=

∫
X
gp(y)G−αp(y)

(∫
X\B(a,|y|a)

u(x)G
q(1+αp′)

p′ (x)dx

) p
q

dy

≥ D̃p(α)

∫
X
gp(y)dy,

where D̃(α) := inf
x6=a

D̃(x, α) = inf
x 6=a

G−α(x)

(∫
B(a,|x|a)

u(y)G
q(1+αp′)

p′ (y)dy

) 1
q

and χ is the

cut-off function. Then we obtain

B
p
q =

(∫
X

(∫
X\B(a,|x|a)

f(y)dy

)q
u(x)dx

) p
q

≥ D̃p(α)

(1 + αp′)
p
p′

∫
X
gp(y)dy

=
D̃p(α)

(1 + αp′)
p
p′

∫
X
fp(y)v(y)dy.

Step 2. Let us define D2 in the following form:

0 < D2 = inf
x 6=a

[(∫
B(a,|x|a)

u(x)dx

) 1
q
(∫

X\B(a,|x|a)

v1−p′(y)dy

) 1
p′
]
. (4.31)
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Let us note a relation between G and G1,

G(x) =

∫
X\B(a,|x|a)

v−
p′
p dx =

∫
X\B(a,|x|a)

zp
′
dx

=

∫ ∞
|x|a

∫
∑
r

zp
′
(r, ω)λ(r, ω)drdω (4.32)

=

∫ ∞
|x|a

H̃2(r)dr

=: G1(|x|a).
For |x|a ≤ |y|a, we have

G1(|x|a) =

∫ ∞
|x|a

H̃2(r)dr ≥
∫ ∞
|y|a

H̃2(r)dr = G1(|y|a),

it means G(x) ≥ G(y). By q(1+αp′)
p′

> 0, we get∫
B(a,|x|a)

u(y)G
q(1+αp′)

p′ (x)dy ≥
∫
B(a,|x|a)

u(y)G
q(1+αp′)

p′ (y)dy,

and by using q < 0, we have

D̃(x, α) = G−α(x)

(∫
B(a,|x|a)

u(y)G
q(1+αp′)

p′ (y)dy

) 1
q

≥ G−α(x)

(∫
B(a,|x|a)

u(y)G
q(1+αp′)

p′ (x)dy

) 1
q

= G−α(x)G
(1+αp′)

p′ (x)

(∫
B(a,|x|a)

u(y)dy

) 1
q

= G
1
p′ (x)

(∫
B(a,|x|a)

u(y)dy

) 1
q

1>(−αp′)−
1
q

≥ (−αp′)−
1
qG

1
p′ (x)

(∫
B(a,|x|a)

u(y)dy

) 1
q

.

(4.33)

Consequently,

D̃(x, α) ≥ (−αp′)−
1
qD2,

it means
D̃(α) ≥ (−αp′)−

1
qD2.

Finally, we obtain

B
1
q ≥ D1(−αp′)−

1
q

(1 + αp′)
1
p′

(∫
X
fp(y)v(y)dy

) 1
p

.

Then, as in the previous case we have

sup
α∈
(

0,− 1
p′

) (−αp′)−
1
q

(1 + αp′)
1
p′

=

(
p′

p′ + q

)− 1
q
(

q

p′ + q

)− 1
p′

.
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Therefore, we have that the biggest constant satisfies

C(p, q) ≥
(

p′

p′ + q

)− 1
q
(

q

p′ + q

)− 1
p′

D2.

Step 3. Let us give a necessity condition of inequality (4.25). By using (4.25) and

f(x) = v−
p′
p (x)χ(t,∞)(|x|a), where χ is cut-off function, we compute

C(p, q) ≤
[∫

X

(∫
X\B(a,|x|a)

f(y)dy

)q
u(x)dx

] 1
q
(∫

X
fp(y)v(y)dx

)− 1
p

=

[∫
X

(∫
X\B(a,|x|a)

f(y)dy

)q
u(x)dx

] 1
q
(∫
|x|a≥t

v−p
′
(y)v(y)dx

)− 1
p

q<0

≤
[∫
|x|a≤t

(∫
|x|a≥t

v−
p′
p (y)dy

)q
u(x)dx

] 1
q
(∫
|x|a≥t

v−p
′
(y)v(y)dx

)− 1
p

=

[∫
|x|a≥t

v1−p′(y)dx

] 1
p′
[∫
|x|a≤t

u(y)dy

] 1
q

,

(4.34)

which gives D2 ≥ C(p, q). �

4.2. Reverse integral Hardy inequality with −∞ < q ≤ p < 0 on the metric
measure space. Main results of this section we show the reverse integral Hardy
inequality and its conjugate in the case −∞ < q ≤ p < 0.

Theorem 4.6. Assume that p, q < 0 such that q ≤ p < 0. Let X be a metric measure
space with a polar decomposition at a ∈ X. Suppose that u, v ≥ 0 are locally integrable
functions on X. Then the inequality[∫

X

(∫
B(a,|x|a)

f(y)dy

)q
u(x)dx

] 1
q

≥ C1(p, q)

(∫
X
fp(x)v(x)dx

) 1
p

(4.35)

holds for all non-negative real-valued measurable functions f , if

0 < D1 = inf
x 6=a
D1(|x|a) = inf

x 6=a

[(∫
B(a,|x|a)

u(y)dy

) 1
q
(∫

B(a,|x|a)

v1−p′(y)dy

) 1
p′
]
,

(4.36)
and D1(|x|a) is a non-decreasing. Moreover, biggest constant C1(p, q) satisfies

D1 ≥ C1(p, q) ≥ |p|
1
q (p′)

1
p′D1, (4.37)

where 1
p

+ 1
p′

= 1.

Proof. Similarly to the previous case, let us divide proof of this theorem by steps.
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Step 1. Firstly, by denoting

Fn(s) :=

∫
∑
σ

λ(s, σ)fp(s, σ)v(s, σ)dσ, (4.38)

Vn(s) :=

∫
∑
σ

λ(s, σ)v1−p′(s, σ)dσ, (4.39)

h(t) :=

(∫ t

0

∫
∑
σ

λ(s, σ)v1−p′(s, σ)dsdσ

) 1
pp′

, (4.40)

H1(t) :=

∫ t

0

∫
∑
σ

λ(s, σ)v−
p′
p (s, σ)h−p

′
(s)dσds, (4.41)

U1(t) :=

∫
∑
σ

λ(s, σ)u(s, σ)dσ. (4.42)

By using the reverse Hölder’s inequality with the polar decomposition, we compute∫
B(a,|x|a)

f(y)dy =

∫
B(a,|x|a)

[f(y)v
1
p (y)h(y)][v

1
p (y)h(y)]−1dy

≥
(∫

B(a,|x|a)

(f(y)v
1
p (y)h(y))pdy

) 1
p
(∫

B(a,|x|a)

(v
1
p (y)h(y))−p

′
dy

) 1
p′

=

(∫ r

0

∫
∑
σ

hp(s)λ(s, σ)fp(s, σ)v(s, σ)dσds

) 1
p

×

(∫ r

0

∫
∑
σ

v−
p′
p (s, σ)h−p

′
(s)λ(s, σ)dσds

) 1
p′

=

(∫ r

0

hp(s)Fn(s)ds

) 1
p

H
1
p′
1 (r).

(4.43)

Let us calculate the H1(t), then we obtain

H1(t) =

∫ t

0

∫
∑
σ

λ(s, σ)v−
p′
p (s, σ)h−p

′
(s)dσds

(4.39)
=

∫ t

0

h−p
′
(s)Vn(s)ds

(4.40)
=

∫ t

0

(∫ s

0

∫
∑
z

λ(z, ω)v1−p′(z, ω)dzdω

)− 1
p

Vn(s)ds

(4.39)
=

∫ t

0

(∫ s

0

Vn(z)dz

)− 1
p

Vn(s)ds

=

∫ t

0

(∫ s

0

Vn(z)dz

)− 1
p

ds

(∫ s

0

Vn(z)dz

)
(4.44)
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= p′
(∫ s

0

Vn(z)dz

) 1
p′ ∣∣t

0

1
p′>0

= p′
(∫ t

0

Vn(z)dz

) 1
p′

= p′hp(t).

By combining this fact in (4.43), we have∫
B(a,|x|a)

f(y)dy ≥
(∫ r

0

hp(s)Fn(s)ds

) 1
p

H
1
p′
1 (r)

(4.44)
= (p′)

1
p′

(∫ r

0

hp(s)Fn(s)ds

) 1
p

h
p
p′ (r),

(4.45)
by multiplying u, integrating over X with q < 0 and by using (direct) Minkowski’s
inequality with q

p
≥ 1, we compute∫

X

(∫
B(a,|x|a)

f(y)dy

)q
u(x)dx

=

∫ ∞
0

∫
∑
ω

u(r, ω)λ(r, ω)

(∫ r

0

∫
∑
σ

λ(s, σ)f(s, σ)dsdσ

)q

drdω

(4.42)
=

∫ ∞
0

U1(r)

(∫ r

0

∫
∑
σ

λ(s, σ)f(s, σ)dsdσ

)q

dr

q<0, (4.45)

≤ (p′)
q
p′

∫ ∞
0

U1(r)

(∫ r

0

hp(s)Fn(s)ds

) q
p

h
qp
p′ (r)dr

= (p′)
q
p′

∫ ∞
0

U1(r)

(∫ ∞
0

χ{0,r}h
p(s)Fn(s)ds

) q
p

h
qp
p′ (r)dr

≤ (p′)
q
p′

[∫ ∞
0

hp(s)Fn(s)

(∫ ∞
s

U1(r)h
qp
p′ (r)dr

) p
q

ds

] q
p

,

(4.46)

where χ{0,r} is the cut-off function. At the same time, we can also estimate

h
pq
p′ (t) =

(∫ t

0

∫
∑
σ

λ(s, σ)v1−p′(s, σ)dsdσ

) q
p′
 1
p′

(4.39)
=

[(∫ t

0

Vn(s)ds

) q
p′
] 1
p′

=

[(∫ t

0

Vn(s)ds

) q
p′
(∫ t

0

U1(s)ds

)(∫ t

0

U1(s)ds

)−1
] 1
p′

= D
q
p′
1 (|t|a)

(∫ t

0

U1(s)ds

)− 1
p′

,

(4.47)
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whereD1(|t|a) :=
(∫ t

0
Vn(s)ds

) 1
p′
(∫ t

0
U1(s)ds

) 1
q
. By using this fact and non-decreasing

of D1(|x|a), we get∫
X

(∫
B(a,|x|a)

f(y)dy

)q
u(x)dx

(4.46)

≤ (p′)
q
p′

[∫ ∞
0

hp(s)Fn(s)

(∫ ∞
s

U1(r)h
qp
p′ (r)dr

) p
q

ds

] q
p

p
q
>0, (4.47)

≤ (p′)
q
p′

∫ ∞
0

hp(s)Fn(s)D
p
p′
1 (s)

(∫ ∞
s

U1(r)

(∫ r

0

U1(z)dz

)− 1
p′

dr

) p
q

ds


q
p

= (p′)
q
p′

∫ ∞
0

hp(s)Fn(s)D
p
p′
1 (s)

(∫ ∞
s

dr

[
p

(∫ r

0

U1(z)dz

) 1
p

]) p
q

ds


q
p

= (p′)
q
p′

∫ ∞
0

hp(s)Fn(s)D
p
p′
1 (s)

(
p

(∫ ∞
0

U1(z)dz

) 1
p

− p
(∫ s

0

U1(z)dz

) 1
p

) p
q

ds


q
p

p<0

≤ (−p)(p′)
q
p′

[∫ ∞
0

hp(s)Fn(s)D
p
p′
1 (s)

(∫ s

0

U1(z)dz

) 1
q

ds

] q
p

(4.40)
= (−p)(p′)

q
p′

[∫ ∞
0

Fn(s)D
1+ p

p′
1 (s)ds

] q
p

= (−p)(p′)
q
p′

[∫ ∞
0

Fn(s)Dp1(s)ds

] q
p

p<0

≤ (−p)(p′)
q
p′Dq

1

[∫ ∞
0

Fn(s)ds

] q
p

(4.38)
= (−p)(p′)

q
p′Dq

1

(∫
X
fp(x)v(x)dx

) q
p

= |p|(p′)
q
p′Dq

1

(∫
X
fp(x)v(x)dx

) q
p

.

(4.48)

Finally,

(∫
X

(∫
B(a,|x|a)

f(y)dy

)q
u(x)dx

) 1
q

≥ |p|
1
q (p′)

1
p′D1

(∫
X
fp(x)v(x)dx

) 1
p

. (4.49)

Hence, it follows that (4.35) holds with C1(p, q) ≥ |p|
1
q (p′)

1
p′D1 proving one of the

relations in (4.37).
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Step 2. In this step we show the biggest constant satisfies C1(p, q) ≤ D1. Let us
denote by f(x) = v1−p′χ{0,t}(|x|a). Then we have[∫

X

(∫
B(a,|x|a)

f(y)dy

)q
u(x)dx

] 1
q

1
q
<0

≤
[∫
|x|a≥t

(∫
B(a,|x|a)

f(y)dy

)q
u(x)dx

] 1
q

=

[∫
|x|a≥t

(∫
|y|a≤t

v1−p′(y)dy

)q
u(x)dx

] 1
q

=

[∫
|y|a≤t

v1−p′(y)dy

] [∫
|x|a≥t

u(x)dx

] 1
q

,

(4.50)

and

C1(p, q)

[∫
X
fp(x)v(x)dx

] 1
p

= C1(p, q)

[∫
|y|a≤t

v1−p′(y)dy

] 1
p

. (4.51)

By using above facts, we obtain

C1(p, q) ≤
[∫
|y|a≤t

v1−p′(y)dy

] 1
p′
[∫
|x|a≥t

u(x)dx

] 1
q

. (4.52)

Finally, we get C1(p, q) ≤ D1. �

Then let us give conjugate integral Hardy inequality.

Theorem 4.7. Assume that p, q < 0 such that q ≤ p < 0. Let X be a metric measure
space with a polar decomposition at a ∈ X. Suppose that u, v ≥ 0 are locally integrable
functions on X. Then the inequality[∫

X

(∫
X\B(a,|x|a)

f(y)dy

)q
u(x)dx

] 1
q

≥ C2(p, q)

(∫
X
fp(x)v(x)dx

) 1
p

(4.53)

holds for all non-negative real-valued measurable functions f , if

0 < D2 = inf
x 6=a
D2(|x|a) = inf

x 6=a

[(∫
X\B(a,|x|a)

u(y)dy

) 1
q
(∫

X\B(a,|x|a)

v1−p′(y)dy

) 1
p′
]
,

(4.54)
and D2(|x|a) is a non-increasing. Moreover, biggest constant C satisfies

D2 ≥ C2(p, q) ≥ |p|
1
q (p′)

1
p′D2, (4.55)

where 1
p

+ 1
p′

= 1.

Proof. The main idea proof of this theorem similar with Theorem 4.6, except we
should use D2(|x|a) is a non-increasing. �

4.3. Reverse Hardy inequality with q < 0 and p ∈ (0, 1) on the homoge-
neous Lie groups. Then we have the following reverse integral Hardy inequality on
homogeneous Lie groups.
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Corollary 4.8. Let G be a homogeneous Lie group of homogeneous dimension Q
with a quasi-norm | · |. Suppose that q < 0, p ∈ (0, 1) and α, β ∈ R. Then the reverse
integral Hardy inequality[∫

G

(∫
B(0,|x|)

f(y)dy

)q
|x|αdx

] 1
q

≥ C

(∫
G
fp(x)|x|βdx

) 1
p

, (4.56)

holds for C > 0 and for all non-negative measurable functions f , if only if

α +Q < 0, β(1− p′) +Q > 0 and
Q+ α

q
+
Q+ β(1− p′)

p′
= 0. (4.57)

Moreover, the biggest constant C for (4.56) satisfies(
|S|
|α +Q|

) 1
q
(

|S|
Q+ β(1− p′)

) 1
p′

≥ C

≥
(
|S|
|α +Q|

) 1
q
(

|S|
Q+ β(1− p′)

) 1
p′
(

p′

p′ + q

)− 1
q
(

q

p′ + q

)− 1
p′

,

(4.58)

where |S| is the area of unit sphere with respect to | · |.

Proof. Let us verify condition (4.10) with u(x) = |x|α, v(x) = |x|β and with a = 0.
By calculating the first integral in (4.10), we obtain∫

G\B(0,|x|)
u(y)dy =

∫
G\B(0,|x|)

|y|αdy (2.11)
=

∫ ∞
|x|

∫
S

ραρQ−1dρdσ(ω)

= |S|
∫ ∞
|x|

ρQ+α−1dρ
Q+α<0

= − |S|
Q+ α

|x|Q+α =
|S|
|Q+ α|

|x|Q+α,

(4.59)

where |S| is the area of the unit quasi-sphere in G. Then,∫
B(0,|x|)

v1−p′(y)dy =

∫
B(0,|x|)

|y|β(1−p′)dy
(2.11)
=

∫ |x|
0

∫
S

ρβ(1−p′)ρQ−1dρdσ(ω)

= |S|
∫ |x|

0

ρQ+β(1−p′)−1dρ

Q+β(1−p′)>0
=

|S|
Q+ β(1− p′)

|x|Q+β(1−p′).

(4.60)

Finally by summarising above facts with Q+α
q

+ Q+β(1−p′)
p′

= 0, we get

D1 =

(
|S|
|α +Q|

) 1
q
(

|S|
Q+ β(1− p′)

) 1
p′

inf
r>0

r
Q+α
q

+
Q+β(1−p′)

p′

=

(
|S|
|α +Q|

) 1
q
(

|S|
Q+ β(1− p′)

) 1
p′

> 0.

(4.61)
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From (4.11), we obtain(
|S|
|α +Q|

) 1
q
(

|S|
Q+ β(1− p′)

) 1
p′

≥ C

≥
(
|S|
|α +Q|

) 1
q
(

|S|
Q+ β(1− p′)

) 1
p′
(

p′

p′ + q

)− 1
q
(

q

p′ + q

)− 1
p′

,

(4.62)

completing the proof. �

Similarly, we have conjugate reverse integral Hardy inequality on homogeneous Lie
groups.

Corollary 4.9. Let G be a homogeneous Lie group of homogeneous dimension Q with
a quasi-norm | · |. Assume that q < 0, p ∈ (0, 1) and α, β ∈ R. Then the conjugate
reverse integral Hardy inequality[∫

G

(∫
G\B(0,|x|)

f(y)dy

)q
|x|αdx

] 1
q

≥ C

(∫
G
fp(x)|x|βdx

) 1
p

, (4.63)

holds for C > 0 and for all non-negative measurable functions f , if only if

α +Q > 0, β(1− p′) +Q < 0 and
Q+ α

q
+
Q+ β(1− p′)

p′
= 0. (4.64)

Moreover, the biggest constant C for (4.63) satisfies(
|S|
α +Q

) 1
q
(

|S|
|Q+ β(1− p′)|

) 1
p′

≥ C

≥
(
|S|
α +Q

) 1
q
(

|S|
|Q+ β(1− p′)|

) 1
p′
(

p′

p′ + q

)− 1
q
(

q

p′ + q

)− 1
p′

,

(4.65)

where |S| is the area of unit sphere with respect to | · |.

Proof. Proof of this corollary is similar to the previous case. �

4.4. Reverse Hardy inequality with ∞ < q ≤ p < 0 on the homogeneous Lie
groups. In this section we show the reverse integral Hardy inequality on homoge-
neous Lie groups.

Theorem 4.10. Let G be a homogeneous Lie group of homogeneous dimension Q
with a quasi-norm | · |. Assume that q ≤ p < 0 and α, β ∈ R. Then the reverse
integral Hardy inequality[∫

G

(∫
B(0,|x|)

f(y)dy

)q
|x|αdx

] 1
q

≥ C1

(∫
G
fp(x)|x|βdx

) 1
p

, (4.66)

holds for C1 > 0 and for all non-negative measurable functions f , if α + Q > 0,

β(1 − p′) + Q > 0 and Q+α
q

+ Q+β(1−p′)
p′

= 0. Moreover, the biggest constant C1 for

(4.66) satisfies(
|S|
α +Q

) 1
q
(

|S|
Q+ β(1− p′)

) 1
p′

≥ C1 ≥ |p|
1
q (p′)

1
p′

(
|S|
α +Q

) 1
q
(

|S|
Q+ β(1− p′)

) 1
p′

.
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Proof. Let us check verify (4.36) with u(x) = |x|α and v(x) = |x|β. Let us calculate
the first integral in (4.36):∫

B(0,|x|)
u(y)dy =

∫
B(0,|x|)

|y|αdy (2.11)
=

∫ |x|
0

∫
S

rαrQ−1drdσ

= |S|
∫ |x|

0

rQ+α−1dr
Q+α>0

=
|S|
Q+ α

|x|Q+α,

(4.67)

where |S| is the area of the unit quasi-sphere in G. Then,∫
B(0,|x|)

v1−p′(y)dy =

∫
B(0,|x|)

|y|β(1−p′)dy
(2.11)
=

∫ |x|
0

∫
S

rβ(1−p′)rQ−1drdσ

= |S|
∫ |x|

0

rQ+β(1−p′)−1dr
Q+β(1−p′)>0

=
|S|

Q+ β(1− p′)
|x|Q+β(1−p′).

(4.68)

Finally by summarising above facts with Q+α
q

+ Q+β(1−p′)
p′

= 0, we have

D1(|x|) =

(
|S|
α +Q

) 1
q
(

|S|
Q+ β(1− p′)

) 1
p′
[
|x|

Q+α
q

+
Q+β(1−p′)

p′

]
=

(
|S|
α +Q

) 1
q
(

|S|
Q+ β(1− p′)

) 1
p′

,

(4.69)

it means D1(|x|) is a non-decreasing function. Then

D1 = inf
x 6=a
D1(|x|) =

(
|S|
α +Q

) 1
q
(

|S|
Q+ β(1− p′)

) 1
p′

> 0.

Therefore, by (4.37) we have

D1 ≥ C1 ≥ |p|
1
q (p′)

1
p′D1,

where D1 =
(
|S|
α+Q

) 1
q
(

|S|
Q+β(1−p′)

) 1
p′
, completing the proof. �

Then we have conjugate reverse integral Hardy inequality on homogeneous Lie
groups.

Theorem 4.11. Let G be a homogeneous Lie group of homogeneous dimension Q
with a quasi-norm | · |. Assume that q ≤ p < 0 and α, β ∈ R. Then the reverse
conjugate integral Hardy inequality[∫

G

(∫
G\B(0,|x|)

f(y)dy

)q
|x|αdx

] 1
q

≥ C2

(∫
G
fp(x)|x|βdx

) 1
p

, (4.70)

holds for C2 > 0 and for all non-negative measurable functions f , if α + Q < 0,

β(1 − p′) + Q < 0 and Q+α
q

+ Q+β(1−p′)
p′

= 0. Moreover, the biggest constant C2 for

(4.70) satisfies(
|S|
|α +Q|

) 1
q
(

|S|
|Q+ β(1− p′)|

) 1
p′

≥ C2 ≥ |p|
1
q (p′)

1
p′

(
|S|
|α +Q|

) 1
q
(

|S|
|Q+ β(1− p′)|

) 1
p′

.
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Proof. Proof of this theorem is similar to the previous case, but we need using The-
orem 4.7. �

4.5. Reverse Hardy inequality with q < 0 and p ∈ (0, 1) on the hyperbolic
space. Let Hn be the hyperbolic space of dimension n and let a ∈ Hn. Let us set

u(x) = (sinh |x|a)α, v(x) = (sinh |x|a)β. (4.71)

Then we have the following result of this subsection.

Corollary 4.12. Let Hn be the hyperbolic space of dimension n and let a ∈ Hn.
Assume that q < 0, p ∈ (0, 1) and α, β ∈ R. Then the reverse integral Hardy
inequality[∫

Hn

(∫
B(a,|x|a)

f(y)dy

)q
(sinh |x|a)αdx

] 1
q

≥ C

(∫
Hn
fp(x)(sinh |x|a)βdx

) 1
p

, (4.72)

holds for C > 0 and for all non-negative measurable functions f, if

0 ≤ α + n < 1, β(1− p′) + n > 0 and
α + n

q
+
β(1− p′) + n

p′
≥ 1

q
+

1

p′
. (4.73)

Proof. Let us verify condition (4.10). By using polar decomposition for the hyperbolic
space, we have

D1 = inf
x 6=a

(∫ ∞
|x|a

(sinh ρ)α+n−1dρ

) 1
q

(∫ |x|a
0

(sinh ρ)β(1−p′)+n−1dρ

) 1
p′

. (4.74)

If α+n < 1 and β(1−p′)+n > 0, then (4.74) is integrable. Let us check the finiteness
and positiveness of the infimum (4.74). Let us divide the proof in two cases.

First case, |x|a � 1. Then sinh |x|a ≈ exp |x|a if |x|a � 1. Then we obtain,

D1
1 = inf

|x|a�1

(∫ ∞
|x|a

(sinh ρ)α+n−1dρ

) 1
q

(∫ |x|a
0

(sinh ρ)β(1−p′)+n−1dρ

) 1
p′

' inf
|x|a�1

(∫ ∞
|x|a

(exp ρ)α+n−1dρ

) 1
q

(∫ |x|a
0

(exp ρ)β(1−p′)+n−1dρ

) 1
p′

= inf
|x|a�1

(
(exp |x|a)α+n−1

) 1
q

(
(exp |x|a)β(1−p′)+n−1

) 1
p′

= inf
|x|a�1

(exp |x|a)
α+n−1

q
+
β(1−p′)+n−1

p′ ,

(4.75)

infimum of the last term is positive, if only if α+n−1
q

+ β(1−p′)+n−1
p′

≥ 0, i.e., α+n
q

+
β(1−p′)+n

p′
≥ 1

q
+ 1

p′
, then D1

1 > 0.
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Let us consider the second case |x|a � 1. For |x|a � 1 we have sinh ρ{0≤ρ<|x|a} ≈ ρ,
then we calculate

inf
|x|a�1

(∫ ∞
|x|a

(sinh ρ)α+n−1dρ

) 1
q

(∫ |x|a
0

(sinh ρ)β(1−p′)+n−1dρ

) 1
p′

' inf
|x|a�1

(∫ R

|x|a
(sinh ρ)α+n−1dρ+

∫ ∞
R

(sinh ρ)α+n−1dρ

) 1
q

(∫ |x|a
0

ρβ(1−p′)+n−1dρ

) 1
p′

' inf
|x|a�1

(∫ R

|x|a
(sinh ρ)α+n−1dρ+

∫ ∞
R

(sinh ρ)α+n−1dρ

) 1
q

|x|
β(1−p′)+n

p′
a .

(4.76)

Similarly, for small R we have sinh ρ{|x|a≤ρ<R} ≈ ρ, so that we obtain

inf
|x|a�1

(∫ ∞
|x|a

(sinh ρ)α+n−1dρ

) 1
q

(∫ |x|a
0

(sinh ρ)β(1−p′)+n−1dρ

) 1
p′

' inf
|x|a�1

(∫ R

|x|a
(sinh ρ)α+n−1dρ+

∫ ∞
R

(sinh ρ)α+n−1dρ

) 1
q

|x|
β(1−p′)+n

p′
a

' inf
|x|a�1

(∫ R

|x|a
ρα+n−1dρ+

∫ ∞
R

(sinh ρ)α+n−1dρ

) 1
q

|x|
β(1−p′)+n

p′
a

' inf
|x|a�1

(
|x|α+n

a + CR
) 1
q |x|

β(1−p′)+n
p′

a .

(4.77)

If α + n ≥ 0, we have α+n
q
≤ 0, then we get

D2
1 = inf

|x|a�1

(∫ ∞
|x|a

(sinh ρ)α+n−1dρ

) 1
q

(∫ |x|a
0

(sinh ρ)β(1−p′)+n−1dρ

) 1
p′

' inf
|x|a�1

(
|x|α+n

a + CR
) 1
q |x|

β(1−p′)+n
p′

a

' inf
|x|a�1

|x|
β(1−p′)+n

p′
a > 0,

(4.78)

and infimum is positive, if only if β(1−p′)+n
p′

< 0, i.e., β(1− p′) + n > 0. �

Let us give the reverse conjugate integral Hardy’s inequality in hyperbolic spaces:

Corollary 4.13. Let Hn be the hyperbolic space of dimension n and a ∈ Hn. Assume
that q < 0, p ∈ (0, 1) and let α, β ∈ R. Then the reverse conjugate integral Hardy
inequality[∫

Hn

(∫
X\B(a,|x|a)

f(y)dy

)q
(sinh |x|a)αdx

] 1
q

≥ C

(∫
Hn
fp(x)(sinh |x|a)βdx

) 1
p

,

(4.79)
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holds for all non-negative measurable functions f, if

α + n > 0, 1 > β(1− p′) + n ≥ 0 and
α + n

q
+
β(1− p′) + n

p′
≥ 1

q
+

1

p′
.

Proof. Similarly to the previous case, check condition (4.26) and then, we have

D2 = inf
x 6=a

(∫ |x|a
0

(sinh ρ)α+n−1dρ

) 1
q (∫ ∞

|x|a
(sinh ρ)β(1−p′)+n−1dρ

) 1
p′

. (4.80)

If α + n > 0 and β(1− p′) + n < 1, then (4.80) is integrable. If |x|a � 1, we obtain,

D1
2 = inf

|x|a�1

(∫ ∞
|x|a

(sinh ρ)α+n−1dρ

) 1
q

(∫ |x|a
0

(sinh ρ)β(1−p′)+n−1dρ

) 1
p′

' inf
|x|a�1

(∫ ∞
|x|a

(exp ρ)α+n−1dρ

) 1
q

(∫ |x|a
0

(exp ρ)β(1−p′)+n−1dρ

) 1
p′

= inf
|x|a�1

(
(exp |x|a)α+n−1

) 1
q

(
(exp |x|a)β(1−p′)+n−1

) 1
p′

= inf
|x|a�1

(exp |x|a)
α+n−1

q
+
β(1−p′)+n−1

p′ ,

(4.81)

infimum of the last term is positive, if only if α+n−1
q

+ β(1−p′)+n−1
p′

≥ 0, i.e., α+n
q

+
β(1−p′)+n

p′
≥ 1

q
+ 1

p′
, then D1

1 > 0.

If |x|a � 1, we obtain

inf
|x|a�1

(∫ |x|a
0

(sinh ρ)α+n−1dρ

) 1
q (∫ ∞

|x|a
(sinh ρ)β(1−p′)+n−1dρ

) 1
p′

' inf
|x|a�1

(∫ |x|a
0

ρα+n−1dρ

) 1
q (∫ R

|x|a
(sinh ρ)β(1−p′)+n−1dρ+

∫ ∞
R

(sinh ρ)β(1−p′)+n−1dρ

) 1
p′

' inf
|x|a�1

(∫ R

|x|a
(sinh ρ)β(1−p′)+n−1dρ+

∫ ∞
R

(sinh ρ)β(1−p′)+n−1dρ

) 1
p′

|x|
α+n
q

a .

(4.82)

Similarly, for small R we have sinh ρ{|x|a≤ρ<R} ≈ ρ, so that we obtain

inf
|x|a�1

(∫ |x|a
0

(sinh ρ)α+n−1dρ

) 1
q (∫ ∞

|x|a
(sinh ρ)β(1−p′)+n−1dρ

) 1
p′

' inf
|x|a�1

(∫ R

|x|a
(sinh ρ)β(1−p′)+n−1dρ+

∫ ∞
R

(sinh ρ)β(1−p′)+n−1dρ

) 1
p′

|x|
α+n
q

a

' inf
|x|a�1

(
|x|β(1−p′)+n

a + C ′R

) 1
q |x|

α+n
q

a .

(4.83)
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If β(1− p′) + n ≥ 0, we have β(1−p′)+n
q

≤ 0, then we have

D2
2 = inf

|x|a�1

(∫ |x|a
0

(sinh ρ)α+n−1dρ

) 1
q (∫ ∞

|x|a
(sinh ρ)β(1−p′)+n−1dρ

) 1
p′

' inf
|x|a�1

(
|x|β(1−p′)+n

a + C ′R

) 1
q |x|

α+n
q

a

' inf
|x|a�1

|x|
α+n
q

a ,

(4.84)

and infimum is positive, if only if α+n
q
< 0, i.e., α + n > 0. �

4.6. Reverse Hardy inequality with q < 0 and p ∈ (0, 1) on the Cartan-
Hadamard manifolds. Let (M, g) be the Cartan-Hadamard manifold with curva-
ture KM . If KM = 0 then J(t, ω) = 1 and we set

u(x) = |x|αa , v(x) = |x|βa , when KM = 0. (4.85)

If KM < 0 then J(t, ω) =
(

sinh
√
bt√

bt

)n−1

and we set

u(x) = (sinh
√
−KM |x|a)α, v(x) = (sinh

√
−KM |x|a)β, when KM < 0. (4.86)

Then we have the following result of this subsection.

Corollary 4.14. Assume that (M, g) be the Cartan-Hadamard manifold of dimension
n and with curvature KM . Assume that q < 0, p ∈ (0, 1) and α, β ∈ R. Then we
have

i) if KM = 0, u(x) = |x|αa , v(x) = |x|βa , then[∫
M

(∫
B(a,|x|a)

f(y)dy

)q
|x|αadx

] 1
q

≥ C

(∫
M

fp(x)|x|βdx
) 1

p

, (4.87)

holds for C > 0 and for non-negative measurable functions f, if only if α+n <

0, β(1− p′) + n > 0 and n+α
q

+ n+β(1−p′)
p′

= 0;

ii) if KM = 0, u(x) = |x|αa , v(x) = |x|βa , then[∫
M

(∫
M\B(a,|x|a)

f(y)dy

)q
|x|αdx

] 1
q

≥ C

(∫
M

fp(x)|x|βdx
) 1

p

, (4.88)

holds for C > 0 and for non-negative measurable functions f, if only if α+n >

0, β(1− p′) + n < 0 and n+α
q

+ n+β(1−p′)
p′

= 0;

iii) if KM < 0, u(x) = (sinh
√
−KM |x|a)α, v(x) = (sinh |x|a)β, then[∫

M

(∫
B(a,|x|a)

f(y)dy

)q
(sinh

√
−KM |x|a)αdx

] 1
q

≥ C

(∫
M

fp(x)(sinh
√
−KM |x|a)βdx

) 1
p

, (4.89)

holds for C > 0 and for all non-negative measurable functions f, if 0 ≤ α+n <

1, β(1− p′) + n > 0 and α+n
q

+ β(1−p′)+n
p′

≥ 1
q

+ 1
p′

;
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iv) if KM < 0, u(x) = (sinh
√
−KM |x|a)α, v(x) = (sinh

√
−KM |x|a)β, then[∫

M

(∫
M\B(a,|x|a)

f(y)dy

)q
(sinh

√
−KM |x|a)αdx

] 1
q

≥ C

(∫
M

fp(x)(sinh
√
−KM |x|a)βdx

) 1
p

, (4.90)

holds for C > 0 and for all non-negative measurable functions f, if α+n > 0,

1 > β(1− p′) + n ≥ 0 and α+n
q

+ β(1−p′)+n
p′

≥ 1
q

+ 1
p′

.

4.7. Reverse Hardy-Littlewood-Sobolev, Stein-Weiss and improved Stein-
Weiss inequalities with q < 0 and p ∈ (0, 1) on the homogeneous Lie groups.
Now we formulate the reverse Stein-Weiss inequality on homogeneous Lie group.

Theorem 4.15. Let G be a homogeneous group of homogeneous dimension Q ≥ 1
and let | · | be an arbitrary homogeneous quasi-norm on G. Assume that λ > 0,
p, q′ ∈ (0, 1), 0 ≤ α < −Q

q
, 0 ≤ β < −Q

p′
, 1
q′

+ 1
p

= α+β+λ
Q

+ 2, where 1
p

+ 1
p′

= 1 and
1
q

+ 1
q′

= 1. Then for all non-negative functions f ∈ Lq′(G) and h ∈ Lp(G) we have∫
G

∫
G
|x|α|y−1x|λf(x)h(y)|y|βdxdy ≥ C‖f‖Lq′ (G)‖h‖Lp(G), (4.91)

where C is a positive constant independent of f and h.

Proof. By using reverse Hölder’s inequality with 1
q

+ 1
q′

= 1 (Theorem 4.1) in (4.91),

we calculate,∫
G

∫
G
|x|αf(x)|y−1x|λh(y)|y|βdydx =

∫
G

(∫
G
|x|α|y−1x|λh(y)|y|βdy

)
f(x)dx

(4.1)

≥
(∫

G

(∫
G
|x|α|y−1x|λh(y)|y|βdy

)q
dx

) 1
q

‖f‖Lq′ (G).

For (4.91), it is enough to show that(∫
G

(∫
G
|x|α|y−1x|λh(y)|y|βdy

)q
dx

) 1
q

≥ C‖h‖Lp(G),

and by changing u(y) = h(y)|y|β, this is equivalent to∫
G

(∫
G
|x|α|y−1x|λu(y)dy

)q
dx ≤ C‖|y|−βu‖qLp(G).

We have that ∫
G
|x|α|y−1x|λu(y)dy ≥

∫
B(0,

|x|
2 )
|x|α|y−1x|λu(y)dy,

then (∫
G
|x|α|y−1x|λu(y)dy

)q q<0

≤

(∫
B(0,

|x|
2 )
|x|α|y−1x|λu(y)dy

)q

.
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Hence, we get(∫
G
|x|αq

(∫
G
|y−1x|λu(y)dy

)q
dx

) 1
q

q<0

≥

(∫
G
|x|αq

(∫
B(0,

|x|
2 )
|y−1x|λu(y)dy

)q

dx

) 1
q

:= I
1
q

1 . (4.92)

Similarly with (4.92), we get

(∫
G
|x|αq

(∫
G
|y−1x|λu(y)dy

)q
dx

) 1
q

q<0

≥
(∫

G
|x|αq

(∫
G\B(0,2|x|)

|y−1x|λu(y)dy

)q
dx

) 1
q

:= I
1
q

2 . (4.93)

By summarising above facts, from (4.92)-(4.93), we have(∫
G
|x|αq

(∫
G
|y−1x|λu(y)dy

)q
dx

) 1
q

≥ I
1
q

1

2
+
I

1
q

2

2
. (4.94)

From now on, in view of Proposition 2.6 we can assume that our quasi-norm is
actually a norm.

Step 1. Let us consider I1. From Proposition 2.6 and the properties of the quasi-

norm with |y| ≤ |x|
2

, we have

|x| = |x−1| = |x−1yy−1| ≤ |x−1y|+ |y−1| = |y−1x|+ |y| ≤ |y−1x|+ |x|
2
. (4.95)

For any λ > 0, we have

2−λ|x|λ ≤ |y−1x|λ.

It means,

2−λ
∫
B(0,

|x|
2 )
|x|λu(y)dy ≤

∫
B(0,

|x|
2 )
|y−1x|λu(y)dy,

so that (∫
B(0,

|x|
2 )
|y−1x|λu(y)dy

)q

≤ 2−λq

(∫
B(0,

|x|
2 )
|x|λu(y)dy

)q

.

Therefore, we have

I1 =

∫
G
|x|αq

(∫
B(0,

|x|
2 )
|y−1x|λu(y)dy

)q

dx

≤ 2−λq
∫
G
|x|(α+λ)q

(∫
B(0,

|x|
2 )
u(y)dy

)q

dx.
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Assume that W (x) = |x|(α+λ)q and U(y) = |y|−βp, if condition (4.10) in Theorem 4.4
is satisfied, then by (4.9) we have

I1 ≤ 2−λq
∫
G

(∫
B(0,

|x|
2

)

u(y)dy

)q

|x|(α+λ)qdx ≤ C1‖|y|−βu‖qLp(G).

Let us check condition (3.136). From assumption β < −Q
p′

, we get

1

p
+

1

q′
=
α + β + λ

Q
+ 2 <

α + λ

Q
− 1

p′
+ 2,

that is, Q+(α+λ)q
Qq

> 0, then Q + (α + λ)q < 0 and by using the polar decomposition

(2.11): (∫
G\B(0,|x|)

W (y)dy

) 1
q

=

(∫
G\B(0,|x|)

|y|(α+λ)qdy

) 1
q

=

(∫ ∞
|x|

∫
S

rQ−1r(α+λ)qdrdσ(ω)

) 1
q

=

(
|S|
∫ ∞
|x|

rQ−1+(α+λ)qdr

) 1
q

=

(
− |S|
Q+ (α + λ)q

|x|Q+(α+λ)q

) 1
q

=

(
|S|

|Q+ (α + λ)q|

) 1
q

|x|
Q+(α+λ)q

q .

From β < −Q
p′

, we get

−βp(1− p′) +Q > −βp(1− p′)− βp′ = 0.

It means −βp(1− p′) +Q > 0. Let us consider(∫
B(0,|x|)

U1−p′(y)dy

) 1
p′

=

(∫
B(0,|x|)

|y|−βp(1−p′)dy
) 1

p′

=

(∫ |x|
0

∫
S

r−βp(1−p
′)rQ−1drdσ(ω)

) 1
p′

=

(
|S|
∫ |x|

0

r−βp(1−p
′)+Q−1dr

) 1
p′

=

(
|S|

−βp(1− p′) +Q
|x|−βp(1−p′)+Q

) 1
p′

=

(
|S|

Q− βp(1− p′)

) 1
p′

|x|
−βp(1−p′)+Q

p′ .

(4.96)
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Hence, we get

A1 = inf
x 6=a

(∫
G\B(0,|x|)

W (y)dx

) 1
q
(∫

B(0,|x|)
U1−p′(y)dy

) 1
p′

=

(
|S|

|Q+ (α + λ)q|

) 1
q
(

|S|
Q− βp(1− p′)

) 1
p′

inf
x 6=a
|x|

(α+λ)q+Q
q

+
−βp(1−p′)+Q

p′

=

(
|S|

|Q+ (α + λ)q|

) 1
q
(

|S|
Q− βp(1− p′)

) 1
p′

inf
x 6=a
|x|Q

(
1
q

+ 1
p′+

α+β+λ
Q

)

=

(
|S|

|Q+ (α + λ)q|

) 1
q
(

|S|
Q− βp(1− p′)

) 1
p′

inf
x 6=a
|x|Q

(
2− 1

q′−
1
p

+α+β+λ
Q

)

=

(
|S|

|Q+ (α + λ)q|

) 1
q
(

|S|
Q− βp(1− p′)

) 1
p′

> 0.

(4.97)

From (4.9), we have

I1 ≤ 2−λq
∫
G
|x|(α+λ)q

(∫
B(0,

|x|
2 )
u(y)dy

)q

dx ≤ 2−λqCq
1‖|y|−βu‖

q
Lp(G), (4.98)

so that

I
1
q

1 ≥ 2−λC1‖|y|−βu‖Lp(G) = 2−λC1‖h‖Lp(G). (4.99)

Step 2. As in the previous case I1, now we consider I2. From 2|x| ≤ |y|, we
calculate

|y| = |y−1| = |y−1xx−1| ≤ |y−1x|+ |x| ≤ |y−1x|+ |y|
2
,

that is,
|y|
2
≤ |y−1x|.

Assume that W (x) = |x|αq and U(y) = |y|−(β+λ)p and if condition (4.26) is satisfied,
then we have

I2 =

∫
G

(∫
G\B(0,2|x|)

|x|α|y−1x|λu(y)dy

)q
dx

≤ 2−λq
∫
G
|x|αq

(∫
G\B(0,2|x|)

u(y)|y|λdy
)q

dx ≤ 2−λq‖|y|−βu‖qLp(G).

Let us verify condition (4.26). Then we get(∫
B(0,|x|)

W (y)dy

) 1
q

=

(∫
B(0,|x|)

|y|αqdy
) 1

q

=

(∫ |x|
0

∫
S

rαqrQ−1drdσ(ω)

) 1
q

=

(
|S|

Q+ αq

) 1
q

|x|
Q+αq
q ,
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where Q+ αq > 0. By using α < −Q
q

, we get

1

q′
+

1

p
=
α + β + λ

Q
+ 2 < −1

q
+
β + λ

Q
+ 2 =

β + λ

Q
+ 1 +

1

q′
,

then

(β + λ)p′ +Q < 0. (4.100)

By using this fact, we have(∫
G\B(0,|x|)

U1−p′(y)dy

) 1
p′

=

(∫
G\B(0,|x|)

|y|−(β+λ)(1−p′)pdy

) 1
p′

=

(∫ ∞
|x|

∫
S

rQ−1r−(β+λ)(1−p′)pdrdσ(ω)

) 1
p′

=

(
|S|
∫ ∞
|x|

r−(β+λ)(1−p′)p+Q−1dr

) 1
p′

(4.100)
=

(
− |S|
Q− (β + λ)(1− p′)p

|x|Q−(β+λ)(1−p′)p
) 1

p′

=

(
− |S|
Q+ (β + λ)p′

|x|Q+(β+λ)p′
) 1

p′

=

(
|S|

|Q+ (β + λ)p′|

) 1
p′

|x|
Q+(β+λ)p′

p′ .

Combining these facts we have

A2 = inf
x6=a

(∫
B(0,|x|)

W (y)dx

) 1
q
(∫

G\B(0,|x|)
U1−p′(y)dx

) 1
p′

=

(
|S|

Q+ αq

) 1
q
(

|S|
|Q+ (β + λ)p′|

) 1
p′

inf
x 6=a
|x|

Q+αq
q

+
Q+(β+λ)p′

p′

=

(
|S|

Q+ αq

) 1
q
(

|S|
|Q+ (β + λ)p′|

) 1
p′

inf
x 6=a
|x|

Q
q

+α+Q
p′+β+λ

=

(
|S|

Q+ αq

) 1
q
(

|S|
|Q+ (β + λ)p′|

) 1
p′

inf
x 6=a
|x|Q

(
1
q

+ 1
p′+

α+β+λ
Q

)

=

(
|S|

Q+ αq

) 1
q
(

|S|
|Q+ (β + λ)p′|

) 1
p′

inf
x 6=a
|x|Q

(
2− 1

q′−
1
p

+α+β+λ
Q

)

=

(
|S|

Q+ αq

) 1
q
(

|S|
|Q+ (β + λ)p′|

) 1
p′

> 0.

(4.101)

Hence, we have

I2 =

∫
G

(∫
G\B(0,2|x|)

|x|αu(y)|y−1x|λdy
)q

dx ≤ 2−λqCq
2‖|y|−βu‖

q
Lp(G).
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Then, we have

I
1
q

2 ≥ 2−λC2‖|y|−βu‖Lp(G) = 2−λC2‖h‖Lp(G). (4.102)

Finally, from (4.99) and (4.102) in (4.94), we obtain(∫
G
|x|αq

(∫
G
|y−1x|λu(y)dy

)q
dx

) 1
q

≥ I
1
q

1

2
+
I

1
q

2

2

≥ 2−λ(C1 + C2)

2
‖|y|−βu‖Lp(G)

=
2−λ(C1 + C2)

2
‖|y|−βu‖Lp(G)

= C3‖|y|−βu‖Lp(G),

(4.103)

where C3 = 2−λ(C1+C2)
2

> 0.
Theorem 4.15 is proved. �

Corollary 4.16. By setting α = β = 0 we get the reverse Hardy-Littlewood-Sobolev
inequality on the homogeneous groups, in the following form:∫

G

∫
G
|y−1x|λf(x)h(y)dxdy ≥ C‖f‖Lq′ (G)‖h‖Lp(G), (4.104)

for all non-negative functions f ∈ Lq′(G) and h ∈ Lp(G) with λ > 0, p, q′ ∈ (0, 1),
1
q′

+ 1
p

= λ
Q

+ 2, where 1
p

+ 1
p′

= 1 and 1
q

+ 1
q′

= 1.

Remark 4.17. In the Abelian (Euclidean) case G = (RN ,+), hence Q = N and | · |
can be any homogeneous quasi-norm on RN , in particular with the usual Euclidean
distance, i.e. | · | = ‖ · ‖E, this was investigated in [54].

Let us give improved reverse Stein-Weiss inequality.

Theorem 4.18. Let G be a homogeneous group of homogeneous dimension Q ≥ 1
and let | · | be an arbitrary homogeneous quasi-norm on G. Suppose that λ > 0,
p, q′ ∈ (0, 1) and 1

q′
+ 1

p
= α+β+λ

Q
+ 2, where 1

p
+ 1

p′
= 1 , 1

q
+ 1

q′
= 1. Then for all

non-negative functions f ∈ Lq′(G) and h ∈ Lp(G), inequality (4.91) holds, that is,∫
G

∫
G
|x|α|y−1x|λf(x)h(y)|y|βdxdy ≥ C‖f‖Lq′ (G)‖h‖Lp(G),

if one of the following conditions is satisfied:

(a) 0 ≤ α < −Q
q

.

(b) 0 ≤ β < −Q
p′

.

Proof. Firstly, let us show (a). By using some notations from proof of Theorem 4.15
and (4.94), we get (∫

G
|x|αq

(∫
G
|y−1x|λu(y)dy

)q
dx

) 1
q

≥ I
1
q

2 , (4.105)
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and from Step 2 in the proof of Theorem 4.15 and by using (4.102), we get I
1
q

2 ≥
C‖|y|−βu‖Lp(G), then we get(∫

G
|x|αq

(∫
G
|y−1x|λu(y)dy

)q
dx

) 1
q

≥ I
1
q

2 ≥ C‖|y|−βu‖Lp(G). (4.106)

Let us show (b). From(4.94), we get(∫
G
|x|αq

(∫
G
|y−1x|λu(y)dy

)q
dx

) 1
q

≥ I
1
q

1 , (4.107)

and from Step 1 in the proof of Theorem 4.15 and by using (4.92), we get I
1
q

1 ≥
C‖|y|−βu‖Lp(G), then we have(∫

G
|x|αq

(∫
G
|y−1x|λu(y)dy

)q
dx

) 1
q

≥ I
1
q

1 ≥ C‖|y|−βu‖Lp(G). (4.108)

�

4.8. Reverse Hardy-Littlewood-Sobolev inequality with −∞ < q < p < 0 on
the homogeneous Lie groups. In this section, we prove reverse Hardy-Littlewood-
Sobolev inequality and Stein-Weiss type inequality with −∞ < q < p < 0 on homo-
geneous Lie groups.

Let us present one of the main results of this section.

Theorem 4.19 (Reverse Hardy-Littlewood-Sobolev inequality). Let G be a homo-
geneous Lie group of homogeneous dimension Q ≥ 1 with a quasi-norm | · |. Assume
that q < p < 0, λ < 0 and 1

p′
+ 1

q
+ λ

Q
= 0, where 1

p
+ 1

p′
= 1 and 1

q
+ 1

q′
= 1. Then for

all non-negative functions f ∈ Lq′(G) and 0 <
∫
G h

p(x)dx <∞,∫
G

∫
G
f(x)|y−1x|λh(y)dxdy ≥ C

(∫
G
f q
′
(x)dx

) 1
q′
(∫

G
hp(x)dx

) 1
p

, (4.109)

where C is a positive constant independent of f and h.

Proof. By using reverse Hölder’s inequality with 1
q

+ 1
q′

= 1, we get∫
G

∫
G
f(x)|y−1x|λh(y)dydx =

∫
G

(∫
G
|y−1x|λh(y)dy

)
f(x)dx

≥
(∫

G

(∫
G
|y−1x|λh(y)dy

)q
dx

) 1
q

‖f‖Lq′ (G).

So for (4.109), it is enough to show that(∫
G

(∫
G
|y−1x|λh(y)dy

)q
dx

) 1
q

≥ C

(∫
G
hp(x)dx

) 1
p

.

We have that ∫
G
|y−1x|λh(y)dy ≥

∫
B(0,

|x|
2 )
|x|α|y−1x|λh(y)dy,



89

then (∫
G
|y−1x|λh(y)dy

)q q<0

≤

(∫
B(0,

|x|
2 )
|y−1x|λh(y)dy

)q

.

Therefore, we obtain(∫
G

(∫
G
|y−1x|λh(y)dy

)q
dx

) 1
q q<0

≥

(∫
G

(∫
B(0,

|x|
2 )
|y−1x|λh(y)dy

)q

dx

) 1
q

. (4.110)

By using Proposition 2.7 with |y| ≤ |x|
2

, we get

|y−1x|
(2.10)

≤ C(|x|+ |y|) ≤ 3C

2
|x| = C1|x|, (4.111)

where C > 0 and C1 = 3C
2

. Then for any λ < 0, we have

Cλ
1 |x|λ ≤ |y−1x|λ.

It means,

Cλ
1

∫
B(0,

|x|
2 )
|x|λh(y)dy ≤

∫
B(0,

|x|
2 )
|y−1x|λh(y)dy,

so that (∫
B(0,

|x|
2 )
|y−1x|λh(y)dy

)q

≤ Cλq
1

(∫
B(0,

|x|
2 )
|x|λh(y)dy

)q

.

Finally,(∫
G

(∫
G
|y−1x|λh(y)dy

)q
dx

) 1
q q<0

≥

(∫
G

(∫
B(0,

|x|
2 )
|y−1x|λh(y)dy

)q

dx

) 1
q

≥ Cλ
1

(∫
G
|x|λq

(∫
B(0,

|x|
2 )
h(y)dy

)q

dx

) 1
q

.

(4.112)

If condition (4.36) in Theorem 4.6 with u(x) = |x|λq and v(x) = 1 in (4.35) is satisfied,
then we have(∫

G
|x|λq

(∫
B(0,

|x|
2 )
h(y)dy

)q

dx

) 1
q

≥ C

(∫
G
hp(x)dx

) 1
p

.

Let us start to check condition (4.36). From assumption, we have

0 =
1

p′
+

1

q
+
λ

Q

1
p′>0

>
1

q
+
λ

Q
, (4.113)

it means Q+ λq > 0. By using this fact, we obtain∫
B(0,

|x|
2 )
u(y)dy =

∫
B(0,

|x|
2 )
|y|λqdy (2.11)

=

∫ |x|
2

0

∫
S

rλqrQ−1drdσ

= |S|
∫ |x|

2

0

rQ+λqdr
Q+λq>0

=
|S|

2Q+λq(Q+ λq)
|x|Q+λq,

(4.114)
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and ∫
B(0,

|x|
2 )
v1−p′(y)dy =

∫
B(0,

|x|
2 )

1dy =

∫ |x|
2

0

∫
S

rQ−1drdσ =
|S|
2Q
|x|Q. (4.115)

Finally, by using assumption 1
p′

+ 1
q

+ λ
Q

= 0,

D1(|x|) =

(
|S|

2Q+λq(Q+ λq)

) 1
q
(
|S|
2Q

) 1
p′

|x|
Q
p′+

Q+λq
q =

(
|S|

2Q+λq(Q+ λq)

) 1
q
(
|S|
2Q

) 1
p′

,

(4.116)

it means, D1(|x|) is a non-decreasing function. Then,

D1 = inf
x 6=a
D1(|x|) =

(
|S|

2Q+λq(Q+ λq)

) 1
q
(
|S|
2Q

) 1
p′

> 0.

�

Remark 4.20. Inequality (4.109) is an even new in the Abelian (Euclidean) case
G = (Rn,+), Q = n and | · | = | · |E (| · |E is the Euclidean distance).

4.9. Reverse Stein-Weiss type inequality with −∞ < q ≤ p < 0 on the
homogeneous Lie groups. Let us show, the reverse Stein-Weiss type inequality on
homogeneous Lie groups.

Theorem 4.21. Let G be a homogeneous Lie group of homogeneous dimension Q ≥ 1
with any quasi-norm | · |. Assume that q ≤ p < 0, λ < 0, β > −Q

p′
, α > −Q

q
and

1
p′

+ 1
q

+ α+β+λ
Q

= 0, where 1
p

+ 1
p′

= 1 and 1
q

+ 1
q′

= 1. Then for all non-negative

functions f ∈ Lq′(G) and 0 <
∫
G h

p(x)dx <∞,∫
G

∫
G
|x|αf(x)|y−1x|λh(y)|y|βdxdy ≥ C

(∫
G
f q
′
(x)dx

) 1
q′
(∫

G
hp(x)dx

) 1
p

, (4.117)

where C is a positive constant independent of f and h.

Proof. Similarly to Theorem 4.15, we need to show∫
G

(∫
G
|x|α|y−1x|λu(y)dy

)q
dx ≤ C

(∫
G
|y|−βpup(x)dx

) q
p

,

where u(y) = h(y)|y|β. We have that∫
G
|x|α|y−1x|λu(y)dy ≥

∫
B(0,

|x|
2 )
|x|α|y−1x|λu(y)dy,

then (∫
G
|x|α|y−1x|λu(y)dy

)q q<0

≤

(∫
B(0,

|x|
2 )
|x|α|y−1x|λu(y)dy

)q

.
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Hence, we obtain(∫
G
|x|αq

(∫
G
|y−1x|λu(y)dy

)q
dx

) 1
q

q<0

≥

(∫
G
|x|αq

(∫
B(0,

|x|
2 )
|y−1x|λu(y)dy

)q

dx

) 1
q

:= I
1
q

1 . (4.118)

Similarly with (4.118), we have

(∫
G
|x|αq

(∫
G
|y−1x|λu(y)dy

)q
dx

) 1
q

q<0

≥
(∫

G
|x|αq

(∫
G\B(0,2|x|)

|y−1x|λu(y)dy

)q
dx

) 1
q

:= I
1
q

2 . (4.119)

By using (4.118)-(4.119), we get(∫
G
|x|αq

(∫
G
|y−1x|λu(y)dy

)q
dx

) 1
q

≥ I
1
q

1

2
+
I

1
q

2

2
. (4.120)

From now on, in view of Proposition 2.7 we can assume that our quasi-norm is
actually a norm.

Step 1. Let us consider I1. By using Proposition 2.7 with |y| ≤ |x|
2

, we get

|y−1x|
(2.10)

≤ C(|x|+ |y|) ≤ 3C

2
|x| = C1|x|, (4.121)

where C > 0 and C1 = 3C
2

. Then for any λ < 0, we have

Cλ
1 |x|λ ≤ |y−1x|λ.

Therefore, we get

I1 =

∫
G
|x|αq

(∫
B(0,

|x|
2 )
|y−1x|λu(y)dy

)q

dx ≤ Cλq
1

∫
G
|x|(α+λ)q

(∫
B(0,

|x|
2 )
u(y)dy

)q

dx.

If condition (4.36) in Theorem 4.6 with u(x) = |x|(α+λ)q and v(y) = |y|−βp in (4.35)
is satisfied, then we have

I1 ≤ Cλq
1

∫
G

(∫
B(0,

|x|
2 )
u(y)dy

)q

|x|(α+λ)qdx ≤ C

(∫
G
|y|−βpup(y)dy

) q
p

.

Let us verify condition (4.36). By using assumption β > −Q
p′

, we obtain

0 =
1

p′
+

1

q
+
α + β + λ

Q
>

1

q
+
α + λ

Q
,
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that is, Q+(α+λ)q
Qq

< 0, then Q + (α + λ)q > 0 and by using the polar decomposition

(2.11):

(∫
B(0,

|x|
2 )
u(y)dy

) 1
q

=

(∫
B(0,

|x|
2 )
|y|(α+λ)qdy

) 1
q

=

(∫ |x|
2

0

∫
S

rQ−1r(α+λ)qdrdσ

) 1
q

=

(
|S|
∫ |x|

2

0

rQ−1+(α+λ)qdr

) 1
q

=

(
|S|

2(α+λ)q(Q+ (α + λ)q)
|x|Q+(α+λ)q

) 1
q

=

(
|S|

2(α+λ)q(Q+ (α + λ)q)

) 1
q

|x|
Q+(α+λ)q

q .

Since β > −Q
p′

, we have

−βp(1− p′) +Q = βp′ +Q > 0.

So, −βp(1− p′) +Q > 0. Then, let us consider

(∫
B(0,

|x|
2 )
v1−p′(y)dy

) 1
p′

=

(∫
B(0,

|x|
2 )
|y|−βp(1−p′)dy

) 1
p′

=

(∫
B(0,

|x|
2 )
|y|βp′dy

) 1
p′

=

(∫ |x|
2

0

∫
S

r−βp(1−p
′)rQ−1drdσ

) 1
p′

=

(
|S|
∫ |x|

2

0

rβp
′+Q−1dr

) 1
p′

=

(
|S|

2βp′+Q(βp′ +Q)
|x|βp′+Q

) 1
p′

=

(
|S|

2βp′+Q(βp′ +Q)

) 1
p′

|x|
βp′+Q
p′ .

(4.122)
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Therefore by using 1
p′

+ 1
q

+ α+β+λ
Q

= 0, we have

D1(|x|) =

(∫
B(0,

|x|
2 )
u(y)dy

) 1
q
(∫

B(0,
|x|
2 )
v1−p′(y)dy

) 1
p′

=

(
|S|

2(α+λ)q(Q+ (α + λ)q)

) 1
q
(

|S|
2βp′+Q(βp′ +Q)

) 1
p′

|x|
(α+λ)q+Q

q |x|
βp′+Q
p′

=

(
|S|

2(α+λ)q(Q+ (α + λ)q)

) 1
q
(

|S|
2βp′+Q(βp′ +Q)

) 1
p′

,

(4.123)

it means D1(|x|) is a non-decreasing function. Therefore,

D1 = inf
x 6=a
D1(|x|) =

(
|S|

2(α+λ)q(Q+ (α + λ)q)

) 1
q
(

|S|
2βp′+Q(βp′ +Q)

) 1
p′

> 0. (4.124)

Then by using (4.35), we obtain

I1 ≤ 2−λq
∫
G
|x|(α+λ)q

(∫
B(0,

|x|
2 )
u(y)dy

)q

dx ≤ C

(∫
G
|y|−βpup(y)dy

) q
p

, (4.125)

so that

I
1
q

1 ≥ C

(∫
G
|y|−βpup(y)dy

) 1
p

= C

(∫
G
hp(y)dy

) 1
p

. (4.126)

Step 2. As in the previous case I1, now we consider I2. From 2|x| ≤ |y|, we
calculate

|y−1x|
(2.10)

≤ C(|x|+ |y|) ≤ 3C

2
|y| = C1|y|,

then ,
|y−1x|λ ≥ C|y|λ,

where C > 0. Then, if condition (4.54) with u(x) = |x|αq and v(y) = |y|−(β+λ)p is
satisfied, then we have

I2 =

∫
G

(∫
G\B(0,2|x|)

|x|α|y−1x|λu(y)dy

)q
dx

≤ C

∫
G
|x|αq

(∫
G\B(0,2|x|)

u(y)|y|λdy
)q

dx ≤ C

(∫
G
|y|−βpup(y)dy

) q
p

.

Now let us check condition (4.54). We have(∫
G\B(0,2|x|)

u(y)dy

) 1
q

=

(∫
G\B(0,2|x|)

|y|αqdy
) 1

q

=

(∫ ∞
2|x|

∫
S

rαqrQ−1drdσ

) 1
q

=

(
2|S|
|Q+ αq|

) 1
q

|x|
Q+αq
q ,
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where Q+ αq < 0. From α > −Q
q

, we have

0 =
1

p′
+

1

q
+
α + β + λ

Q
>

1

p′
+
β + λ

Q
,

then

(β + λ)p′ +Q < 0. (4.127)

By using this fact, we have

(∫
G\B(0,2|x|)

v1−p′(y)dy

) 1
p′

=

(∫
G\B(0,2|x|)

|y|−(β+λ)(1−p′)pdy

) 1
p′

=

(
2|S|

|Q+ (β + λ)p′|

) 1
p′

|x|
Q+(β+λ)p′

p′ .

Then by using 1
p′

+ 1
q

+ α+β+λ
Q

= 0, we get

D2(|x|) =

(
2|S|
|Q+ αq|

) 1
q
(

2|S|
|Q+ (β + λ)p′|

) 1
p′

|x|
Q+αq
q |x|

Q+(β+λ)p′
p′

=

(
2|S|
|Q+ αq|

) 1
q
(

2|S|
|Q+ (β + λ)p′|

) 1
p′

,

(4.128)

it means D2(|x|) is a non-increasing function. Therefore we have

D2 = inf
x 6=a
D2(|x|) = inf

x 6=a

(∫
G\B(0,2|x|)

u(y)dy

) 1
q
(∫

G\B(0,2|x|)
v1−p′(y)dy

) 1
p′

=

(
2|S|
|Q+ αq|

) 1
q
(

2|S|
|Q+ (β + λ)p′|

) 1
p′

> 0.

(4.129)

Therefore, we have

I2 =

∫
G

(∫
G\B(0,2|x|)

|x|αu(y)|y−1x|λdy
)q

dx ≤ 2−λqCq
2

(∫
G
|y|−βpup(y)dy

) q
p

.

Then, we have

I
1
q

2 ≥ 2−λC2

(∫
G
|y|−βpup(y)dy

) 1
p

= 2−λC2

(∫
G
hp(y)dy

) 1
p

. (4.130)
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Finally, by using (4.126) and (4.130) in (4.120), we obtain(∫
G
|x|αq

(∫
G
|y−1x|λ|y|βh(y)dy

)q
dx

) 1
q

=

(∫
G
|x|αq

(∫
G
|y−1x|λu(y)dy

)q
dx

) 1
q

≥ I
1
q

1

2
+
I

1
q

2

2

≥ C

(∫
G
|y|−βpup(y)dy

) 1
p

= C

(∫
G
hp(y)dy

) 1
p

.

(4.131)

�

Remark 4.22. Inequality (4.117) is an even new in the Abelian (Euclidean) case
G = (RN ,+), Q = N and | · | = | · |E (| · |E is the Euclidean distance).

Remark 4.23. Particularly, from (4.117) we can not obtain the reverse Hardy-
Littlewood-Sobolev inequality from α > −Q

q
> 0.

4.10. Improved reverse Stein-Weiss type inequality with −∞ < q ≤ p < 0.
Let us present the improved reverse Stein-Weiss type inequality on homogeneous Lie
groups.

Theorem 4.24. Let G be a homogeneous group of homogeneous dimension Q ≥ 1
and let | · | be an arbitrary homogeneous quasi-norm on G. Assume that q ≤ p < 0,
λ < 0, and 1

p′
+ 1

q
+ α+β+λ

Q
= 0, where 1

p
+ 1

p′
= 1 and 1

q
+ 1

q′
= 1. Then for all

non-negative functions f ∈ Lq′(G) and 0 <
∫
G h

p(x)dx <∞, (4.117) holds, that is,∫
G

∫
G
|x|αf(x)|y−1x|λh(y)|y|βdxdy ≥ C

(∫
G
f q
′
(x)dx

) 1
q′
(∫

G
hp(x)dx

) 1
p

, (4.132)

if one of the following conditions is satisfied:

(a) β > −Q
p′

;

(b) α > −Q
q

.

Proof. Let us prove (a). By using (4.130), we have(∫
G
|x|αq

(∫
G
|y−1x|λu(y)dy

)q
dx

) 1
q

≥
(∫

G
|x|αq

(∫
G\B(0,2|x|)

|y−1x|λu(y)dy

)q
dx

) 1
q

,

where u(y) = |y|βh(y). Then by using Step 2 in the proof of Theorem 4.21, we obtain

(∫
G
|x|αq

(∫
G
|y−1x|λu(y)dy

)q
dx

) 1
q

≥
(∫

G

(∫
G\B(0,2|x|)

|x|αu(y)|y−1x|λdy
)q

dx

) 1
q

Step 2

≥ C

(∫
G
|y|−βpup(y)dy

) 1
p

.
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Let us prove (b). By using (4.126), we have

(∫
G
|x|αq

(∫
G
|y−1x|λu(y)dy

)q
dx

) 1
q

≥

(∫
G
|x|αq

(∫
B(0,

|x|
2 )
|y−1x|λu(y)dy

)q

dx

) 1
q

,

where u(y) = |y|βh(y). Then by using Step 1 in the proof of Theorem 4.21, we obtain(∫
G
|x|αq

(∫
G
|y−1x|λu(y)dy

)q
dx

) 1
q

≥

(∫
G

(∫
B(0,

|x|
2 )
|x|αu(y)|y−1x|λdy

)q

dx

) 1
q

Step 1

≥ C

(∫
G
|y|−βpup(y)dy

) 1
p

.

�

Remark 4.25. Inequality (4.132) is an even new in the Abelian (Euclidean) case
G = (RN ,+), Q = N and | · | = | · |E (| · |E is the Euclidean distance) with the
conditions in Theorem 4.24.

4.11. Reverse Hardy inequality with radial derivative on the homogeneous
Lie groups. Let us give reverse Hardy, Lp-Sobolev and Lp-Caffarelli-Kohn-Nirenberg
inequalities on G. Suppose that f is a radially decreasing function, i.e., Rf := d

d|x|f <

0. Let us give the reverse Hardy inequality on homogeneous Lie groups.

Theorem 4.26 (Reverse Hardy inequality). Let G be a homogeneous Lie group with
homogeneous dimension Q ≥ 1. Assume that p ∈ (0, 1). Then for any non-negative,
real-valued and radially decreasing function f ∈ C∞0 (G \ {0}), we have∥∥∥∥ f|x|

∥∥∥∥
Lp(G)

≥ p

Q− p
‖Rf‖Lp(G). (4.133)

Proof. By denoting R1 = −R, so that we have R1f > 0. By combining polar
decomposition (2.11), integration by parts and reverse Hölder’s inequality, we get∫

G

fp(x)

|x|p
dx =

∫ ∞
0

∫
S

fp(ry)

rp
rQ−1drdσ(y)

= − p

Q− p

∫
G

fp−1(x)

|x|p−1
Rf(x)dx

=
p

Q− p

∫
G

fp−1(x)

|x|p−1
R1f(x)dx

≥ p

Q− p

∥∥∥∥ f|x|
∥∥∥∥p−1

Lp(G)

‖R1f‖Lp(G).

(4.134)

This gives ∥∥∥∥ f|x|
∥∥∥∥
Lp(G)

≥ p

Q− p
‖R1f‖Lp(G), (4.135)

implying (4.133). �
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4.12. Reverse Lp-Sobolev inequality with radial derivative on the homoge-
neous Lie groups. Let us define by E = |x|R the Euler operator. Then we have
the reverse Lp-Sobolev inequality.

Theorem 4.27 (Reverse Lp-Sobolev inequality). Let G be a homogeneous Lie group
with homogeneous dimension Q ≥ 1. Assume that p ∈ (0, 1). Then for any non-
negative, real-valued and radially decreasing function f ∈ C∞0 (G \ {0}), we have

‖f‖Lp(G) ≥
p

Q
‖Ef‖Lp(G). (4.136)

Proof. By denote E1 = |x|R1, so that E1f > 0. By combining polar decomposition
(2.11), integration by parts and reverse Hölder’s inequality, we get∫

G
fp(x)dx =

∫ ∞
0

∫
S

fp(ry)rQ−1drdσ(y)

= − p
Q

∫
G
fp−1(x)|x|Rf(x)dx

=
p

Q

∫
G
fp−1(x)|x|R1f(x)dx

=
p

Q

∫
G
fp−1(x)E1f(x)dx

≥ p

Q
‖f‖p−1

Lp(G) ‖E1f‖Lp(G).

(4.137)

This gives

‖f‖Lp(G) ≥
p

Q
‖E1f‖Lp(G), (4.138)

implying (4.136). �

4.13. Reverse Lp-Caffarelli-Kohn-Nirenberg inequality on the homogeneous
Lie groups. Let us give the reverse Lp-Caffarelli-Kohn-Nirenberg inequality on G.

Theorem 4.28 (Reverse Lp-Caffarelli-Kohn-Nirenberg inequality). Let G be a homo-
geneous Lie group with homogeneous dimension Q ≥ 1. Assume that p ∈ (0, 1). Then
for any nonnegative, real-valued and radially decreasing function f ∈ C∞0 (G \ {0}),
we have ∥∥∥∥∥ f

|x|
γ
p

∥∥∥∥∥
p

Lp(G)

≥ p

Q− γ

∥∥∥∥Rf|x|α
∥∥∥∥
Lp(G)

∥∥∥∥∥ f

|x|
β
p−1

∥∥∥∥∥
p−1

Lp(G)

, (4.139)

for all α, β ∈ R and γ = α + β + 1, such that Q > γ.
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Proof. By combining polar decomposition (2.11), integration by parts and reverse
Hölder’s inequality, we get∫

G

fp(x)

|x|γ
dx =

∫ ∞
0

∫
S

fp(ry)

rγ
rQ−1drdσ(y)

= − p

Q− γ

∫
G

fp−1(x)

|x|γ−1
Rf(x)dx

=
p

Q− γ

∫
G

fp−1(x)

|x|α+β
R1f(x)dx

=
p

Q− γ

∫
G

fp−1(x)

|x|β
R1f(x)

|x|α
dx

≥ p

Q− γ

∥∥∥∥∥ f

|x|
βp′
p

∥∥∥∥∥
p−1

Lp(G)

∥∥∥∥R1f

|x|α

∥∥∥∥
Lp(G)

=
p

Q− γ

∥∥∥∥∥∥ f

|x|
β

p
p−1
p

∥∥∥∥∥∥
p−1

Lp(G)

∥∥∥∥R1f

|x|α

∥∥∥∥
Lp(G)

=
p

Q− γ

∥∥∥∥∥ f

|x|
β
p−1

∥∥∥∥∥
p−1

Lp(G)

∥∥∥∥R1f

|x|α

∥∥∥∥
Lp(G)

.

(4.140)

This gives ∥∥∥∥∥ f

|x|
γ
p

∥∥∥∥∥
p

Lp(G)

≥ p

Q− γ

∥∥∥∥R1f

|x|α

∥∥∥∥
Lp(G)

∥∥∥∥∥ f

|x|
β
p−1

∥∥∥∥∥
p−1

Lp(G)

, (4.141)

which implies (4.139). �

Remark 4.29. In (4.139), if we take γ = p and α = 0, then we have the reverse
Hardy inequality. Also, if we take γ = 0 and β = 0, then we have the reverse
Lp-Sobolev inequality.
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5. Applications

In this chapter, we show some applications of the fractional functional inequalities
in PDE.

5.1. Lyapunov-type inequality for the fractional p-sub-Laplacian. In the one
of the popular Lyapunov’s work [67], he considered the following one-dimensional
homogeneous Dirichlet boundary value problem was studied (for the second order
ODE) {

u′′(x) + ω(x)u(x) = 0, x ∈ (a, b),

u(a) = u(b) = 0,
(5.1)

and it was proved that, if u is a non-trivial solution of (5.1) and ω(x) is a real-valued
and continuous function on [a, b], then∫ b

a

|ω(x)|dx > 4

b− a
. (5.2)

Inequality (5.2) is called a (classical) Lyapunov inequality. This inequality has an
application in spectral theory. If ω(x) = λ, where λ is a positive constant, then we
get lower estimate for the first eigenvalue of the problem (5.1) in the following form:

λ1 >
4

(b− a)2
.

Now, Lyapunov’s inequality has a lot of extensions in one-dimensional and multi-
dimensional cases. As example, in the work [68] the author obtains the Lyapunov
inequality for the one-dimensional Dirichlet p-Laplacian{

(|u′(x)|p−2u′(x))′ + ω(x)up−1(x) = 0, x ∈ (a, b), 1 < p <∞,
u(a) = u(b) = 0,

(5.3)

where ω(x) ∈ L1(a, b), so∫ b

a

|ω(x)|dx > 2p

(b− a)p−1
, 1 < p <∞. (5.4)

Particularly, if p = 2 in (5.4), we recover (5.2).
In the paper [69] the authors obtained interesting results concerning Lyapunov

inequalities for the multi-dimensional fractional p-Laplacian (−∆p)
s, 1 < p <∞, s ∈

(0, 1), with a homogeneous Dirichlet boundary condition, that is,{
(−∆p)

su = ω(x)|u|p−2u, x ∈ Ω,

u(x) = 0, x ∈ RN \ Ω,
(5.5)

where Ω ⊂ RN is a measurable set, 1 < p < ∞, and s ∈ (0, 1). Let us recall the
following result of [69].
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Theorem 5.1. Let ω ∈ Lθ(Ω) with N > sp, N
sp
< θ <∞, be a non-negative weight.

Suppose that problem (5.5) has a non-trivial weak solution u ∈ W s,p
0 (Ω). Then(∫

Ω

ωθ(x) dx

) 1
θ

>
C

r
sp−N

θ
Ω

, (5.6)

where C > 0 is a universal constant and rΩ is the inner radius of Ω.

In this section we prove a Lyapunov-type inequality for the fractional p-sub-Laplacian
with a homogeneous Dirichlet boundary problem on G. Assume p > 1 and s ∈ (0, 1)
be such that Q > sp and Ω ⊂ G be a Haar measurable set. We denote by rΩ,q the
inner quasi-radius of Ω, that is,

rΩ,q = max{|x| : x ∈ Ω}. (5.7)

Let us consider {
(−∆p)

su(x) = ω|u(x)|p−2u(x), x ∈ Ω,

u(x) = 0, x ∈ G \ Ω,
(5.8)

where ω ∈ L∞(Ω).

Definition 5.2. A function u ∈ W s,p
0 (Ω) is called a weak solution of the problem

(5.8) if∫
Ω

∫
Ω

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|y−1x|Q+sp
dxdy =

∫
Ω

ω(x)|u(x)|p−2u(x)v(x)dx

(5.9)
for all v ∈ W s,p

0 (Ω).

Then we have the following theorem:

Theorem 5.3. Let Ω ⊂ G be a Haar measurable set. Let ω ∈ Lθ(Ω) be a non-
negative weight with Q

sp
< θ < ∞. Suppose that problem (5.8) with Q > ps has a

non-trivial weak solution u ∈ W s,p
0 (Ω). Then, we have

‖ω‖Lθ(Ω) ≥
C

r
sp−Q/θ
Ω,q

, (5.10)

where C = C(Q, p, s) > 0.

Proof. By denoting
β = αp+ (1− α)p∗,

where α = θ−θ/sp
θ−1

∈ (0, 1) and p∗ is the Sobolev conjugate exponent as in Theorem
3.9. Assume that β = pθ′ with 1/θ + 1/θ′ = 1. Then, we have∫

Ω

|u(x)|β

rαspΩ,q

dx ≤
∫

Ω

|u(x)|β

|x|αsp
dx. (5.11)

By using Hölder’s inequality with exponents ν = α−1 and 1/ν + 1/ν ′ = 1, we get∫
Ω

|u(x)|β

|x|αsp
dx ≤

∫
Ω

|u(x)|αp|u(x)|(1−α)p∗

|x|αsp
dx ≤

(∫
Ω

|u(x)|p

|x|spdx

)α(∫
Ω

|u(x)|p∗dx
)1−α

.

(5.12)
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Then, by combining Theorem 3.9 and 3.4, we have∫
Ω

|u(x)|β

|x|αsp
dx ≤ Cα

1

(∫
Ω

∫
Ω

|u(x)− u(y)|p

|y−1x|Q+sp
dxdy

)α/p
C

(1−α)p∗/p
2 [u](1−α)p∗/p

s,p

≤ Cα
1 [u]αs,pC

(1−α)p∗/p
2 [u](1−α)p∗/p

s,p

= C
(
[u]ps,p

)(αp+(1−α)p∗)/p

= C

(∫
Ω

ω(x)|u(x)|pdx
)θ′

≤ C

(∫
Ω

ωθ(x)dx

)θ′/θ ∫
Ω

|u(x)|pθ′dx

= C‖ω‖θ′Lθ(Ω)

∫
Ω

|u(x)|βdx.

It means, we have ∫
Ω

|u(x)|β

|x|αsp
dx ≤ C‖ω‖θ′Lθ(Ω)

∫
Ω

|u(x)|βdx.

Thus, from (5.11) we get

1

rαspΩ,q

∫
Ω

|u(x)|βdx ≤
∫

Ω

|u(x)|β

|x|αsp
dx ≤ C‖ω‖θ′Lθ(Ω)

∫
Ω

|u(x)|βdx. (5.13)

Finally, we arrive at
C

r
sp−Q/θ
Ω,q

≤ ‖ω‖Lθ(Ω). (5.14)

Theorem 5.3 is proved. �

Let consider the following spectral problem for the non-linear, fractional p-sub-
Laplacian (−∆p)

s, 1 < p <∞, s ∈ (0, 1), with Dirichlet boundary condition:{
(−∆p)

su = λ|u|p−2u, x ∈ Ω,

u(x) = 0, x ∈ G \ Ω.
(5.15)

We have the following Rayleigh quotient for the fractional Dirichlet p-sub-Laplacian
(cf. [69])

λ1 = inf
u∈W s,p

0 (Ω), u 6=0

[u]ps,p
‖u‖pLp(G)

. (5.16)

As a consequence of Theorem 5.3 we obtain the following theorem:

Theorem 5.4. Assume λ1 be the first eigenvalue of problem (5.15) given by (5.16).
Assume Q > sp, s ∈ (0, 1) and 1 < p <∞. Then we have

λ1 ≥ sup
Q
sp
<θ<∞

C

|Ω| 1θ rsp−Q/θΩ,q

, (5.17)

where C is a positive constant given in Theorem 5.3, | · | is the Haar measure and
rΩ,q is the inner quasi-radius of Ω.
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Proof. In Theorem 5.3, by taking ω = λ1 ∈ Lθ(Ω) and using Lyapunov-type inequality
(5.10), we get that

‖ω‖Lθ(Ω) = ‖λ1‖Lθ(Ω) =

(∫
Ω

λθ1dx

)1/θ

≥ C

r
sp−Q/θ
Ω,q

. (5.18)

For every θ > Q
sp

, we have

λ1 ≥
C

|Ω| 1θ rsp−Q/θΩ,q

. (5.19)

Thus, we get

λ1 ≥ sup
Q
sp
<θ<∞

C

|Ω| 1θ rsp−Q/θΩ,q

, (5.20)

for all Q
sp
< θ <∞.

Theorem 5.4 is proved. �

5.2. Lyapunov-type inequality for the fractional p-sub-Laplacian system.
Historically, in the work [70], at the first time authors showed Lyapunov’s inequality
for the system. They considered a system of ODE for p and q-Laplacian on the
interval (a, b) with the homogeneous Dirichlet condition in the following form:{

−(|u′(x)|p−2u′(x))′ = f(x)|u(x)|α−2u(x)|v(x)|β,
−(|v′(x)|q−2v′(x))′ = g(x)|u(x)|α|v(x)|β−2v(x),

(5.21)

on the interval (a, b), with

u(a) = u(b) = v(a) = v(b) = 0, (5.22)

where f, g ∈ L1(a, b), f, g ≥ 0, p, q > 1, α, β ≥ 0 and

α

p
+
β

q
= 1.

So, for the system (5.21) with Dirichlet condition (5.22), we have the following esti-
mate (Lyapunov’s inequality):

2α+β ≤ (b− a)
α
p′+

β
q′

(∫ b

a

f(x)dx

)α
p
(∫ b

a

g(x)dx

)β
q

, (5.23)

where p′ = p
p−1

and q′ = q
q−1

. For the more general Lyapunov’s inequality for fractional

p-Laplacian with homogeneous Dirichlet conditions was proved in [71]. In the previous
section, we proved a Lyapunov-type inequality for the fractional p-sub-Laplacian with
the homogeneous Dirichlet condition. Here we establish Lyapunov-type inequality for
the fractional p-sub-Laplacian system for the homogeneous Dirichlet problem.

Namely, let us consider the fractional p-sub-Laplacian system:
(−∆p1)

s1u1(x) = ω1(x)|u1(x)|α1−2u1(x)|u2(x)|α2 . . . |un(x)|αn , x ∈ Ω,

(−∆p2)
s2u2(x) = ω2(x)|u1(x)|α1|u2(x)|α2−2u2(x) . . . |un(x)|αn , x ∈ Ω,

. . .

(−∆pn)snun(x) = ωn(x)|u1(x)|α1|u2(x)|α2 . . . |un(x)|αn−2un(x), x ∈ Ω,

(5.24)
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with homogeneous Dirichlet conditions

ui(x) = 0, x ∈ G \ Ω, i = 1, . . . , n, (5.25)

where Ω ⊂ G is a Haar measurable set, ωi ∈ L1(Ω), ωi ≥ 0, si ∈ (0, 1), pi ∈ (1,∞)
and (−∆p)

s is the fractional p-sub-Laplacian on G. Here B(x, δ) is a quasi-ball with
respect to q, with radius δ, centred at x ∈ G, and αi are positive parameters such
that

n∑
i=1

αi
pi

= 1. (5.26)

We denote by rΩ,q the inner quasi-radius of Ω.

Definition 5.5. We say that (u1, . . . , un) ∈
∏n

i=1 W
si,pi
0 (Ω) is a weak solution of

(5.24)-(5.25) if for all (v1, . . . , vn) ∈
∏n

i=1W
si,pi
0 (Ω), we have∫

G

∫
G

|ui(x)− ui(y)|pi−2(ui(x)− ui(y))(vi(x)− vi(y))

|y−1x|Q+sipi
dxdy

=

∫
Ω

ωi(x)

(
i−1∏
j=1

|uj(x)|αj
)(

n∏
j=i+1

|uj(x)|αj
)
|ui(x)|αi−2ui(x)vi(x)dx, (5.27)

for every i = 1, . . . , n.

Now we present the following analogue of the Lyapunov-type inequality for the
fractional p-sub-Laplacian system on G.

Theorem 5.6. Let si ∈ (0, 1) and pi ∈ (1,∞) be such that Q > sipi for all i =
1, . . . , n. Let ωi ∈ Lθ(Ω) be a non-negative weight and assume that

1 < max
i=1,...,n

{
Q

sipi

}
< θ <∞.

If (5.24)-(5.25) admits a nontrivial weak solution, then

n∏
i=1

‖ωi‖
θαi
pi

Lθ(Ω)
≥ Cr

Q−θ
∑n
j=1 sjαj

Ω,q , (5.28)

where C > 0 is a positive constant.

Remark 5.7. In Theorem 5.6, by taking n = 1 and α1 = p, we establish the
Lyapunov-type inequality for the fractional p-sub-Laplacian on G (see, e.g. Theo-
rem 5.3).

Proof of Theorem 5.6. For all i = 1, . . . , n, let us denote

ξi = γipi + (1− γi)p∗i , (5.29)

and

γi =
θ − Q

sipi

θ − 1
, (5.30)
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where p∗i = Q
Q−sipi is the Sobolev conjugate exponent as in Theorem 3.9. For all

i = 1, . . . , n we have γi ∈ (0, 1) and ξi = piθ
′, where θ′ = θ

θ−1
. Then for every

i ∈ {1, . . . , n} we have ∫
Ω

|ui(x)|ξi
rγisipiΩ,q

dx ≤
∫

Ω

|ui(x)|ξi
|x|γisipi

dx,

and from Hölder’s inequality with the following exponents νi = 1
γi

and 1
νi

+ 1
ν′i

= 1,

we get∫
Ω

|ui(x)|ξi
|x|γisipi

dx =

∫
Ω

|ui(x)|γipi |ui(x)|(1−γi)p∗i
|x|γisipi

dx

≤
(∫

Ω

|ui(x)|pi
|x|sipi

dx

)γi (∫
Ω

|ui(x)|p∗i dx
)1−γi

. (5.31)

On the other hand, from Theorem 3.9, we obtain(∫
Ω

|ui(x)|p∗i dx
)1−γi

≤ C[ui]
p∗i (1−γi)
si,pi ,

and from Theorem 3.4, we have(∫
Ω

|ui(x)|pi
|x|sipi

dx

)γi
≤ C[ui]

piγi
si,pi

.

Thus, from (5.31) and by taking ui(x) = vi(x) in (5.27), we get∫
Ω

|ui(x)|ξi
|x|γisipi

≤ C([ui]
pi
si,pi,Ω

)
ξi
pi ≤ C([ui]

pi
si,pi

)
ξi
pi

= C

(∫
Ω

ωi(x)
n∏
j=1

|uj|αjdx

) ξi
pi

= C

(∫
Ω

ωi(x)
n∏
j=1

|uj|αjdx

)θ′

,

for every i = 1, . . . , n. Hence, by using Hölder’s inequality with exponents θ and θ′,
we obtain ∫

Ω

|ui(x)|ξi
|x|γisipi

dx ≤ C‖ωi‖
θ
θ−1

Lθ(Ω)

∫
Ω

n∏
j=1

|uj(x)|αjθ′dx.

By using Hölder’s inequality and (5.26), we get∫
Ω

n∏
j=1

|uj(x)|αjθ′dx ≤
n∏
j=1

(∫
Ω

|uj|θ
′pjdx

)αj
pj

.

This implies that∫
Ω

|ui(x)|ξi
|x|γisipi

dx ≤ C‖ωi‖
θ
θ−1

Lθ(Ω)

n∏
j=1

(∫
Ω

|uj|θ
′pjdx

)αj
pj

.

So we establish ∫
Ω

|ui(x)|ξi
rγisipiΩ,q

dx ≤
∫

Ω

|ui(x)|ξi
|x|γisipi

dx
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≤ C‖ωi‖
θ
θ−1

Lθ(Ω)

n∏
j=1

(∫
Ω

|uj|θ
′pjdx

)αj
pj

.

Thus, for every ei > 0 we have(∫
Ω

|ui(x)|ξi
rγisipiΩ,q

dx

)ei

=
1

reiγisipiΩ,q

(∫
Ω

|ui(x)|ξidx
)ei

≤ C‖ωi‖
eiθ

θ−1

Lθ(Ω)

n∏
j=1

(∫
Ω

|uj|θ
′pjdx

) eiαj
pj

,

so that
1

r
∑n
j=1 γjsjpjej

Ω,q

n∏
i=1

(∫
Ω

|ui(x)|θ′pidx
)ei

≤ C

(
n∏
i=1

‖ωi‖
eiθ

θ−1

Lθ(Ω)

) n∏
i=1

(∫
Ω

|ui(x)|θ′pidx
)αi

∑n
j=1 ej

pi

 .

This yields

1

r
∑n
j=1 γjsjpjej

Ω,q

≤ C

(
n∏
i=1

‖ωi‖
eiθ

θ−1

Lθ(Ω)

)(
n∏
i=1

(
|ui(x)|θ′pidx

)αi∑n
j=1 ej

pi
−ei
)
, (5.32)

where C is a positive constant. Then, let us choose ei, i = 1, . . . , n, such that

αi
∑n

j=1 ej

pi
− ei = 0, i = 1, . . . , n.

Consequently, by using (5.26) we have the solution of this system

ei =
αi
pi
, i = 1, . . . , n. (5.33)

By combining (5.32), (5.30) and (5.33) we establish
n∏
i=1

‖ωi‖
θαi
pi

Lθ(Ω)
≥ Cr

Q−θ
∑n
j=1 sjαj

Ω,q . (5.34)

Theorem 5.3 is proved. �

Now, let us discuss an application of the Lyapunov-type inequality for the fractional
p-sub-Laplacian system on G. In order to do it we consider the spectral problem for
the fractional p-sub-Laplacian system in the following form:

(−∆p1)
s1u1(x) = λ1α1ϕ(x)|u1(x)|α1−2u1(x)|u2(x)|α2 . . . |un(x)|αn , x ∈ Ω,

(−∆p2)
s2u2(x) = λ2α2ϕ(x)|u1(x)|α1|u2(x)|α2−2u2(x) . . . |un(x)|αn , x ∈ Ω,

. . .

(−∆pn)snun(x) = λnαnϕ(x)|u1(x)|α1|u2(x)|α2 . . . |un(x)|αn−2un(x), x ∈ Ω,

(5.35)
with

ui(x) = 0, x ∈ G \ Ω, i = 1, . . . , n, (5.36)
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where Ω ⊂ G is a Haar measurable set, ϕ ∈ L1(Ω), ϕ ≥ 0 and si ∈ (0, 1), pi ∈
(1,∞), i = 1, . . . , n.

Definition 5.8. We say that λ = (λ1, . . . , λn) is an eigenvalue if the problem (5.35)-
(5.36) admits at least one nontrivial weak solution (u1, . . . , un) ∈

∏n
i=1W

si,pi
0 (Ω).

Theorem 5.9. Let si ∈ (0, 1) and pi ∈ (1,∞) be such that Q > sipi, for all i =
1, . . . , n, and

1 < max
i=1,...,n

{
Q

sipi

}
< θ <∞.

Let ϕ ∈ Lθ(Ω) with ‖ϕ‖Lθ(Ω) 6= 0. Then, we have

λk ≥
C

αk

 1∏n
i=1,i 6=k λ

αi
pi
i


pk
αk

 1

r
θ
∑n
i=1 αisi−Q

Ω,q

∏n
i=1,i 6=k α

θαi
pi
i

∫
Ω
ϕθ(x)dx


pk
θαk

, (5.37)

where C is a positive constant and k = 1, . . . , n.

Proof of Theorem 5.9. In Theorem 5.6 by taking ωk = λkαkϕ(x), k = 1, . . . , n, we
have

α
θαk
pk
k λ

θαk
pk
k

n∏
i=1,i 6=k

(αiλi)
θαi
pi

n∏
i=1

‖ϕ‖
θαi
pi

Lθ(Ω)
≥ Cr

Q−θ
∑n
j=1 sjαj

Ω,q .

Thus, using (5.26) we obtain

α
θαk
pk
k λ

θαk
pk
k

n∏
i=1,i 6=k

(αiλi)
θαi
pi

∫
Ω

ϕθ(x)dx ≥ Cr
Q−θ

∑n
j=1 sjαj

Ω,q .

This implies

λ
θαk
pk
k ≥ C

α
θαk
pk
k r

θ
∑n
j=1 sjαj−Q

Ω,q

∏n
i=1,i 6=k(αiλi)

θαi
pi

∫
Ω
ϕθ(x)dx

, k = 1, . . . , n.

Finally, we obtain that

λk ≥
C

αk

 1∏n
i=1,i 6=k λ

αi
pi
i


pk
αk

 1

r
θ
∑n
i=1 αisi−Q

Ω,q

∏n
i=1,i 6=k α

θαi
pi
i

∫
Ω
ϕθ(x)dx


pk
θαk

,

k = 1, . . . , n. (5.38)

Theorem 5.9 is proved. �

5.3. Existence of weak solutions with nonlocal source on the Heisenberg
and stratified groups. In [72], under certain assumptions on f (classically, this
condition is called Ambrosetti-Rabinowitz condition), for the following semilinear
equation {

−∆u = f(x, u), x ∈ Ω ⊂ Rn,

u(x) = 0, x ∈ ∂Ω,
(5.39)
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the authors proved existence of solutions by the mountain pass theorem. Mountain
pass theorem is using to show critical points of the some differentiable functional.
Here and after by ∂Ω we denote the boundary of a smooth bounded set Ω. After the
work of Ambrosetti and Rabinowitz [72], a number of extensions and generalisations
of their result has been published. Also, for the fractional nonlinear problems, for
the fractional p−Laplacian, fractional Schrödinger–Kirchhoff type and Choquard-
Kirchhoff existence of weak solutions were proved in [73], [74], [75] and [76]. One
of the main aim of this section is to extend the above ideas to non-commutative
analysis, it means using our functional inequalities. Hence, we will consider analogues
problems on the Heisenberg group, which is the most popular example of the non-
Abelian nilpotent Lie groups. On the Heisenberg group, there is already a number of
results related to the existence of solutions to the semilinear equations starting the
pioneering works (see e.g., [77] and [78]). In this section we show existence of the
weak solution by mountain pass theorem on Heisenberg group, which can be easily
extended to the general stratified Lie groups.

Firstly, let us give definition of the Palais-Smale sequence (shortly, (PS)c) sequence.

Definition 5.10. [72] Let E be a Banach space. A sequence {un} is a (PS)c sequence
for a functional Φ ∈ (Φ,R), if every {un} ⊂ E satisfies:

Φ(un)→ c, for n→∞, (5.40)

and

Φ′(un)→ 0, for n→∞ in E∗, (5.41)

where ′ is the Fréchet differential and E∗ is the dual space of E.

Then let us give a version of the (minimax) mountain pass theorem (see, e.g. [79]).

Theorem 5.11. Suppose that X be a Banach space and Φ : X → R a C1-functional
with a (PS)c sequence. Let Γ be a class of paths joining u = 0 with u = ω:

Γ := {γ ∈ C([0, 1], X) | γ(0) = 0, γ(1) = ω}, (5.42)

where ω ∈ X, ‖ω‖ > r > 0, Φ is bounded from below on S(0, ρ) = {u ∈ X : ‖u‖ ≤ ρ},
that is,

α = max{Φ(0),Φ(ω)} < inf
u∈S(0,ρ)

Φ(u) = β. (5.43)

Then Φ possesses a critical value c ≥ β which can be characterised as

c = inf
γ∈Γ

max
u∈γ(0,1)

Φ(u).

5.3.1. On Heisenberg group. It is well-known that the class of the Heisenberg groups
is a subclass of the stratified Lie groups, that is, obviously, the above theorem is valid
for the Heisenberg group setting. Firstly, we show our result on Heisenberg group.

Assume that f(x, ξ) is a Carathéodory function f : Ω × R → R satisfying the
following assumptions (Ambrosetti-Rabinowitz condition):

p1) There exist constants a1, a2 > 0 such that |f(x, ξ)| ≤ a1 + a2|ξ|s, a.e. x ∈ Ω
and ξ ∈ R with p < s < Qp

Q−p − 1;

p2) lim|ξ|→0
f(x,ξ)
|ξ|p−1 = 0, uniformly in x ∈ Ω;
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p3) There exist µ > p and r > 0 such that 0 < µF (x, ξ) < ξf(x, ξ) with |ξ| > r,

a.e. x ∈ Hn, ξ ∈ R. Here F (x, ξ) =
∫ ξ

0
f(x, t)dt.

p4) f(x, ξ) ∈ C(Ω,R).

As the model case, the function f(x, ξ) = a(x)|ξ|s−2ξ with a ∈ L∞(Ω) and s ∈
[p, p∗) can be considered as a Carathéodory function satisfying the assumptions p1)-
p4).

Then, under the above assumptions on the right hand side, we consider the follow-
ing homogeneous Dirichlet boundary value problem for the p-sub-Laplacian with the
nonlinear source (or the nonlinear right hand side) on the Heisenberg group:{

−∆H,pu = f(x, u), x ∈ Ω ⊂ Hn, 1 < p < Q,

u(x) = 0, x ∈ ∂Ω,
(5.44)

where ∆H,p is defined in (2.30). Let us recall from Section 2.3 the Sobolev space in
the following form:

S1,p(Ω) := {u ∈ Lp(Ω) : Xiu ∈ Lp(Ω) and Yiu ∈ Lp(Ω), i = 1, . . . , n} (5.45)

with the norm

‖u‖S1,p(Ω) =

(∫
Ω

|u(x)|p + |∇Hu(x)|pdx
) 1

p

. (5.46)

Let S1,p
0 (Ω) defined as the completion of C∞0 (Ω) with the norm

‖u‖S1,p
0 (Ω) =

(∫
Ω

|∇Hu(x)|pdx
) 1

p

. (5.47)

For simplicity, we also use the notation W := S1,p
0 (Ω).

Note that the above integral measure is indeed the standard Lebesque measure
since it can be considered as a Haar measure on Hn, that is, the Lebesque measure
is also translation invariant with respect to the group law of Hn.

To introduce a variational structure for problem (5.44), we introduce I : W → R
as follows

I(u) :=
1

p

∫
Ω

|∇Hu|pdx−
∫

Ω

F (x, u)dx, (5.48)

where

F (x, u) =

∫ u

0

f(x, ξ)dξ.

We note I is a Fréchet differentiable functional with respect to u ∈ W for any ϕ ∈ W ,
so we have

〈I ′(u), ϕ〉 =

∫
Ω

|∇Hu|p−2∇Hu · ∇Hϕdx−
∫

Ω

f(x, u)ϕ(x)dx, (5.49)

where 〈·, ·〉 is the dual product between W and its dual space W ∗. Let us give the
definition of a weak solution.

Definition 5.12. We say u : Ω→ R is a weak solution of (5.44), if u ∈ W , such that∫
Ω

|∇Hu|p−2∇Hu · ∇Hϕdx =

∫
Ω

f(x, u)ϕ(x)dx, ∀ϕ ∈ C∞c (Ω). (5.50)

Then we have the following properties of Carathéodory functions:
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Lemma 5.13. Let Ω be a measurable set in Hn. Assume that f is a Carathéodory
function and assumption p3) holds true, then there exist constants a3, a4 > 0 such
that

a3|ξ|µ − a4 ≤ F (x, ξ), ∀x ∈ Ω, (5.51)

where µ > p.

Lemma 5.14. Let Ω be a measurable set in Hn. Assume that f be a Carathéodory
function satisfying assumptions p1) and p4). Then for any ξ ∈ R, we have

|f(x, ξ)| ≤ ε|ξ|p−1 + (s+ 1)κ(ε)|ξ|s, (5.52)

and

|F (x, ξ)| ≤ ε|ξ|p + κ(ε)|ξ|s+1, (5.53)

where ε and κ(ε) are some positive small numbers. Here the numbers s and p are
defined as in p1).

Note that the proofs of Lemma 5.13 and Lemma 5.14 are exactly the same as the
Euclidean case in [72].

Let us check the first assumption of the mountain pass theorem.

Lemma 5.15. Let Ω be a measurable set in Hn. Assume that f be a Carathéodory
function satisfying the assumptions p1) and p2). Then there exist positive constants
ρ, α > 0 such that ‖u‖W = ρ and I(u) ≥ α for all u ∈ W .

Proof. By using Lemma 5.14 in (5.48), we get

I(u) =
1

p

∫
Ω

|∇Hu(x)|pdx−
∫

Ω

F (x, u(x))dx ≥ 1

p

∫
Ω

|∇Hu(x)|pdx− ε
∫

Ω

|u(x)|pdx

− κ(ε)

∫
Ω

|u(x)|s+1dx.

(5.54)

From 1 < p < p∗ and Ω is a measurable domain, we have the continuous embedding
Lp
∗
(Ω) ↪→ Lp(Ω) in Ω ⊂ Hn. For s + 1 < p∗ we also have the following continuous

embedding Lp
∗
(Ω) ↪→ Ls+1(Ω), then

I(u) =
1

p

∫
Ω

|∇Hu(x)|pdx−
∫

Ω

F (x, u(x))dx

≥ 1

p

∫
Ω

|∇Hu(x)|pdx− ε
∫

Ω

|u(x)|pdx− κ(ε)

∫
Ω

|u(x)|s+1dx

=
1

p

∫
Ω

|∇Hu(x)|pdx− ε‖u‖pLp(Ω) − κ(ε)‖u‖s+1
Ls+1(Ω)

≥ 1

p

∫
Ω

|∇Hu(x)|pdx− C1ε‖u‖pLp∗ (Ω)
− κ(ε)C2‖u‖s+1

Lp∗ (Ω)
.

(5.55)
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Moreover, by using Folland-Stein’s continuous embedding W ↪→ Lp
∗
(Ω) (Theorem

3.45), we have

I(u) ≥ 1

p

∫
Ω

|∇Hu(x)|pdx− C1ε

(∫
Ω

|u(x)|p∗dx
) p

p∗

− C2κ(ε)

(∫
Ω

|u(x)|p∗dx
) s+1

p∗

≥ ‖u‖pW
(

1

p
− C1ε− C2κ(ε)‖u‖s+1−p

W

)
. (5.56)

Assume that u ∈ W and ‖u‖W = ρ > 0. From assumption s + 1 > p, choosing ρ

sufficiently small and choosing ε such that α := ρp
(

1
p
− C1ε− C2κ(ε)ρs+1−p

)
> 0,

we get

inf
u∈W,‖u‖W=ρ

I(u) ≥ ρp
(

1

p
− C1ε− C2κ(ε)ρs+1−p

)
> 0. (5.57)

Lemma 5.15 is proved. �

Now let us check the second assupmtion of the mountain pass theorem.

Lemma 5.16. Assume that f be a Caratheódory function satisfying p1)-p4). Then
there exists v > 0 a.e. in W , ‖v‖W > ρ and I(v) < α, where the constants α and ρ
are given as in Lemma 5.15.

Proof. By fixing ‖u‖W = 1 and u ≥ 0 a.e. in Hn with t > 0. From Lemma 5.13, we
calculate

I(tu) =
1

p

∫
Ω

|∇H(tu)|pdx−
∫

Ω

F (x, tu(x))dx ≤ tp

p

∫
Ω

|∇Hu|pdx

− a4t
µ

∫
Ω

|u|µdx+ a3|Ω| =
tp

p
− a4t

µ

∫
Ω

|u|µdx+ a3|Ω|. (5.58)

From the assumption µ > p and by taking t → +∞, we have I(tu) → −∞. Conse-
quently, by taking v = βu, with β sufficiently large, we obtain the desired result. �

From the above lemmas follow that the assumptions of the mountain pass theorem
are fulfilled by the functional (5.48). Then we need to show the (PS)c compactness
condition for the functional (5.48).

Lemma 5.17. Assume that f be a Carathéodory function satisfying p1)-p4). Let
{un} be a sequence satisfying I(un)→ c and

sup{|〈I ′(un), ϕ〉| : ϕ ∈ W, ‖ϕ‖W = 1} → 0 n→∞. (5.59)

Then the sequence {un} ⊂ W is bounded in W .

Proof. Assume that {un} ⊂ W be a (PS)c sequence. Then for every ϕ ∈ W we have

〈I ′(un), ϕ〉 =

∫
Ω

|∇Hun|p−2∇Hun · ∇Hϕdx−
∫

Ω

f(x, un)ϕdx, (5.60)

and

I(un) =
1

p

∫
Ω

|∇Hun|pdx−
∫

Ω

F (x, un)dx. (5.61)
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Hence, we have

I(un)− 1

µ
〈I ′(un), un〉 =

(
1

p
− 1

µ

)∫
Ω

|∇Hun|pdx−
∫

Ω

(
F (x, un)− f(x, un)un

µ

)
dx

=

(
1

p
− 1

µ

)∫
Ω

|∇Hun|pdx−
∫

Ω∩|un|≤r

(
F (x, un)− f(x, un)un

µ

)
dx

−
∫

Ω∩|un|>r

(
F (x, un)− f(x, un)un

µ

)
dx, (5.62)

where µ > p.
Let us consider the second term on the right hand side. From Lemma 5.14 we

calculate∣∣∣∣∫
Ω∩|un|≤r

F (x, un)− f(x, un)un
µ

dx

∣∣∣∣
≤
(
εrp + κ(ε)rs+1 +

1

µ
(εr2 + qκ(ε)rs+1)

)
|Ω|. (5.63)

Let us denote the right hand side by

θ̃ :=

(
εrp + κ(ε)rs+1 +

1

µ
(εr2 + qκ(ε)rs+1)

)
|Ω|

By combining (5.63) and assumption p3), we get

I(un)− 1

µ
〈I ′(un), un〉 ≥

(
1

p
− 1

µ

)∫
Ω

|∇Hun|pdx− θ̃. (5.64)

By the assumption in (5.59) with ϕ := un
‖un‖W

for any n there exists a number λ > 0,

such that ∣∣∣∣〈I ′(un),

(
un
‖un‖W

)〉∣∣∣∣ ≤ λ,

with I(un) ≤ λ. Hence, we have

I(un)− 1

µ
〈I ′(un), un〉 ≤ λ(1 + ‖un‖W ), (5.65)

combining this with (5.64) we arrive at(
1

p
− 1

µ

)
‖un‖pW ≤ λ(1 + ‖un‖W ) + θ̃.

Finally,

‖un‖pW ≤
(

1

p
− 1

µ

)−1

(λ(1 + ‖un‖W ) + θ̃)

≤
(

1

p
− 1

µ

)−1

C1(1 + ‖un‖W ) ≤ C(1 + ‖un‖W ).

where C is a positive constant. �

Now we have to show that the (PS)c sequence of I has a strong convergent subse-
quence, so we can say I satisfies the (PS)c condition.
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Lemma 5.18. Under assumptions p1)-p4), if {un} ⊂ W is a (PS)c sequence of I,
then {un} has a strong convergent subsequence in W .

Proof. Since W is a Banach space, we have un ⇀ u weakly in W . Hence,

〈I ′(un), (un − u)〉 =

∫
Ω

|∇Hun|p−2∇Hun · ∇H(un − u)dx

−
∫

Ω

f(x, un)(un − u)dx→ 0, n→∞.
(5.66)

Also, we have un → u strongly convergence in Ls+1(Ω), where s ∈ [p, p∗ − 1). Then,

f(x, un)(un − u)→ 0, a.e. in Ω, n→∞. (5.67)

Moreover, by using the Vitali convergence theorem, we obtain

lim
n→∞

∫
Ω

f(x, un)(un − u)dx = 0. (5.68)

Plugging (5.68) in (5.66), we have∫
Ω

|∇Hun|p−2∇Hun · ∇H(un − u)dx→ 0, n→∞. (5.69)

Since {un} weakly converges in W , we arrive at∫
Ω

(|∇Hun|p−2∇Hun − |∇Hu|p−2∇Hu) · ∇H(un − u)dx→ 0, n→∞. (5.70)

Now let us give some useful vector inequalities. Let C1, C2 be positive constants
depending only on p. Then, we have

|a− b|p ≤ C1(|a|p−2a− |b|p−2b) · (a− b), p ≥ 2, (5.71)

and

|a− b|2 ≤ C2(|a|+ |b|)2−p(|a|p−2a− |b|p−2b) · (a− b), 1 < p < 2, (5.72)

for all vectors a, b ∈ RN . Firstly, let us consider the case p ≥ 2. By applying (5.71)
to (5.70), we have

‖un − u‖pW =

∫
Ω

|∇H(un − u)|pdx =

∫
Ω

|∇Hun −∇Hu|pdx

≤ C1

∫
Ω

(
|∇Hun|p−2∇Hun − |∇Hu|p−2∇Hu

)
· (∇Hun −∇Hu)dx

= C1

∫
Ω

(
|∇Hun|p−2∇Hun − |∇Hu|p−2∇Hu

)
· ∇H(un − u)dx→ 0,

(5.73)

as n→∞. It means for p ≥ 2, we have

‖un − u‖W → 0, n→∞.
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Let us consider the case 1 < p < 2. By using the fact {un} is bounded in W , applying
(5.70) to (5.72), we have

‖un − u‖pW =

∫
Ω

|∇H(un − u)|pdx =

∫
Ω

|∇Hun −∇Hu|pdx

≤ C2

(∫
Ω

(
|∇Hun|p−2∇Hun − |∇Hu|p−2∇Hu

)
· (∇Hun −∇Hu)dx

) p
2

×
(∫

Ω

|∇Hun|+ |∇Hu|dx
) (2−p)p

2

≤ C3

(∫
Ω

(
|∇Hun|p−2∇Hun − |∇Hu|p−2∇Hu

)
· (∇Hun −∇Hu)dx

) p
2

→ 0,
(5.74)

as n→∞. hence, we get

‖un − u‖W → 0, n→∞, 1 < p <∞.

�

Theorem 5.19. Let f be a Carathéodory function satisfying p1)-p4). Then there
exists a non-trivial weak solution of problem (5.44).

Proof. By using Lemma 5.18, any (PS)c subsequence of I has strong convergence in
W . Also, we have that

I(0) = 0,

and by taking ρ as in Lemma 5.16, there exists α such that I(u) ≥ α > 0 = I(0),
where

u ∈ W, and ‖u‖W = ρ.

Therefore, now applying the mountain pass theorem, we get a critical point of the
functional I(u) which is a non-trivial weak solution of problem (5.44). �

5.3.2. On Stratified groups. Then let us extend previous result on the case of stratified
groups. Now let us consider the Dirichlet boundary value problem on stratified Lie
groups G: {

−Lpu = f(x, u), x ∈ Ω ⊂ G, 1 < p < Q,

u(x) = 0, x ∈ ∂Ω,
(5.75)

where f is a Carathéodory function satisfying the assumptions p1)− p4) on G. Then
we have the following theorem:

Theorem 5.20. There exists a non-trivial weak solution of problem (5.75).

The proof is the same as the one of Theorem 5.19.
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5.4. Multiplicity of the weak solutions for the sub-Laplacian with Hardy
potential. In [80], Ghoussoub and Yuan considered the following problem with the
Hardy-Sobolev potential:{

−∆pu(x)− λu(x)
|x|p = |u|p−2u, x ∈ Ω ⊂ Rn,

u(x) = 0, x ∈ ∂Ω,
(5.76)

obtained existence and multiplicity of the weak solutions. Since then, analogues of
the problem with the Hardy potential have been considered by many authors, see
[81, 82, 83] and [84], for example.

In [85], Ghoussoub and Shakerian considered the following problem with fractional
Laplacian and the Hardy-Sobolev potential:

(−∆s)u− γ
u

|x|2s
= |u|2∗s−2u+

|u|2∗s(α)−2u

|x|α
, u > 0, x ∈ Rn,

showed existence of the nontrivial weak solution. In this direction, most of studies
have been dedicated to the single Hardy-Sobolev nonlinearity. In [86], the author
investigated the following problem:

(−∆s)u− γ
u

|x|2s
=
|u|2∗s(β)−2u

|x|β
+
|u|2∗s(α)−2u

|x|α
, u > 0, x ∈ Rn,

showed multiplicity of the weak solution with the doubling Hardy-Sobolev potential,
which generalises previous cases. In this section, we show multiplicity of the weak
solutions with first stratum Hardy potential on Heisenberg and stratified groups.

5.4.1. On Heisenberg group. Let us recall the “horizontal” Lp-Caffarelli–Kohn–Nirenberg
inequality on Heisenberg group.

Theorem 5.21 (Theorem 3.1., [29]). For any f ∈ C∞0 (Hn \ {z = 0}), and all
1 < p <∞, we have

|2n− γ|
p

∥∥∥∥∥ f

|z|
γ
p

∥∥∥∥∥
Lp(Hn)

≤
∥∥∥∥∇Hf

|z|α

∥∥∥∥
Lp(Hn)

∥∥∥∥∥ f

|z|
β
p−1

∥∥∥∥∥
Lp(Hn)

, α, β ∈ R, (5.77)

where γ = α + β + 1. If γ 6= 2n then the constant |2n−γ|
p

is sharp.

When α = 0 and β = p − 1, inequality (5.77) implies the first stratum Hardy
inequality, that is, for all f ∈ C∞0 (Hn \ {z = 0}), we have

|2n− p|
p

∥∥∥∥ f|z|
∥∥∥∥
Lp(Hn)

≤ ‖∇Hf‖Lp(Hn) , z = (x, y) ∈ R2n, (5.78)

where |z| =
√
x2

1 + . . .+ x2
n + y2

1 + . . .+ y2
n.

Similarly with previous section, we also use the notation W := S1,2
0 (Ω). Also, let

us define Sobolev space with the norm:

‖u‖X :=

(
‖∇Hu‖2

W − λ
∫

Ω

|u|2

|z|2
dξ

) 1
2

, 0 < λ < λ = (n− 1)2 =
(Q− 4)2

4
. (5.79)

Indeed, ‖ · ‖W and ‖ · ‖X are equivalent norms.
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Let Ω ⊂ Hn be a measurable set with sufficiently smooth boundary ∂Ω such that

(0, 0, t) /∈ Ω. Assume that n > 1 (that is, Q > 4), 0 < λ < λ = (n− 1)2 = (Q−4)2

4
and

1 < p < 2∗ − 1 = 2Q
Q−2
− 1. In this subsection, we show multiplicity of positive weak

solutions to the problem:
−∆Hu(ξ)− λu(ξ)

|z|2 = up(ξ), ξ ∈ Ω ⊂ Hn,

u(ξ) > 0, ξ ∈ Ω,

u(ξ) = 0, ξ ∈ ∂Ω,

(5.80)

where |z| =
√
x2

1 + . . .+ x2
n + y2

1 + . . .+ y2
n, z = (x, y) ∈ R2n.

To present a variational structure for problem (5.80), we introduce I : W → R as
follows

I(u) :=
1

2

∫
Ω

|∇Hu|2dξ −
λ

2

∫
Ω

u2
+

|z|2
dξ − 1

p+ 1

∫
Ω

up+1
+ dξ, (5.81)

where u+ = max{u, 0}.
Note that I is a Fréchet differentiable functional with respect to u ∈ W for any

ϕ ∈ W , so we have

〈I ′(u), ϕ〉 =

∫
Ω

∇Hu · ∇Hϕdξ − λ
∫

Ω

u+ϕ

|z|2
dξ −

∫
Ω

up+ϕdξ. (5.82)

For the functional I, let us verify the assumptions of Theorem 5.11.

Lemma 5.22. Let Ω be a Haar measurable set in Hn. Then there exist positive
constants ρ, α > 0 such that ‖u‖W = ρ and I(u) ≥ α for all u ∈ W .

Proof. Firstly, by the Folland-Stein-Sobolev inequality (Theorem 3.45), by using the
facts that the norms (5.47) and (5.79) are equivalent, 2 < p + 1 < 2∗ = 2Q

Q−2
and

L2∗(Ω) ↪→ Lp+1(Ω), we have

‖u‖Lp+1(Ω) ≤ C‖u‖L2∗ (Ω) ≤ C‖u‖W . (5.83)

Now we give an estimate to the functional I(u). So, using the above embedding
and first stratum Hardy inequality we compute

I(u) =
1

2

∫
Ω

|∇Hu|2dξ −
λ

2

∫
Ω

u2
+

|z|2
dξ − 1

p+ 1

∫
Ω

up+1
+ dξ

(5.78)

≥ 1

2
‖u‖2

W −
λ

2λ
‖u‖2

W −
1

p+ 1

∫
Ω

up+1
+ dξ

(5.83)

≥
(

1

2
− λ

2λ

)
‖u‖2

W −
C2

p+ 1
‖u‖p+1

W

= C1‖u‖2
W −

C2

p+ 1
‖u‖p+1

W ,

(5.84)

where C1, C2 > 0. Let u ∈ W and ‖u‖W = ρ > 0. By choosing ρ sufficiently small,

we have α := C1ρ2

2
− C2ρp+1

p+1
> 0, thus, we arrive at

inf
u∈W,‖u‖W=ρ

I(u) ≥ C1ρ
2

2
− C2ρ

p+1

p+ 1
> 0. (5.85)

�
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Lemma 5.23. Under assumptions of Lemma 5.22, there exists v > 0 a.e. in W ,
‖v‖W > ρ and I(v) < α, where the constants α and ρ are given as in Lemma 5.22.

Proof. Let us fix ‖u‖W = 1 and u ≥ 0 a.e. in Hn with t > 0. Then we get

I(tu) =
1

2
‖tu‖2

W −
λ

2

∫
Ω

(tu+)2

|z|2
dξ − 1

p+ 1

∫
Ω

(tu+)p+1dξ

≤ 1

2
‖tu‖2

W −
1

p+ 1

∫
Ω

(tu+)p+1dξ

=
t2

2
− tp+1

p+ 1

∫
Ω

up+1
+ dξ.

(5.86)

By the assumption p > 1 and by taking t → +∞, we get I(tu) → −∞. Thus, by
setting v = βu, with β sufficiently large, we arrive at the desired result. �

Finally, we need to check (PS)c condition for our functional. But we need to show
some preliminary result.

Lemma 5.24. Let {un} be a bounded sequence in W such that I ′(un)→ 0, as n→∞.
Then there exists u ∈ W such that, up to a subsequence, ‖un− u‖W → 0, as n→∞.

Proof. Since the norm ‖ · ‖W is equivalent to ‖ · ‖X and {un} is a bounded in W with
the norm ‖ · ‖W , then we have

‖un‖X = ‖un‖W − λ
∫

Ω

u2

|z|2
dξ

λ>0

≤ ‖un‖W ≤ C. (5.87)

By [3, Theorem 4.4.28], W is a Banach and reflexive space, so we have

un ⇀ u, in W, with the norm, ‖ · ‖X (5.88)

and
un → u, in Lr(Hn), 1 ≤ r < 2∗, un → u, a.e. in Hn. (5.89)

From this fact for p+ 1 < 2∗ and I ′(un)→ 0 as n→∞, we have

lim
n→∞

‖un‖2
X = lim

n→∞
‖(un)+‖p+1

Lp+1(Ω). (5.90)

Similarly, we get

lim
n→∞

(∫
Ω

∇Hu · ∇Hun − λ
∫

Ω

u(un)+

|z|2
dξ

)
= ‖(u)+‖p+1

Lp+1(Ω). (5.91)

By combining above facts, we obtain

‖un − u‖X → 0, n→∞.
By using property of norm’s equivalence, we have

‖un − u‖W → 0, n→∞.
�

Lemma 5.25. Assume that {un} be a (PS)c sequence such that Definition 5.10.
Then there exists u ∈ W such that

lim
n→∞

‖un − u‖W = 0. (5.92)
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Proof. By using Definition 5.10, we obtain

c+ o(1) = I(un)− 1

p+ 1
〈I ′(un), un〉 =

(
1

2
− 1

p+ 1

)
‖un‖2

W

− λ
(

1

2
− 1

p+ 1

)∫
Ω

(un)2
+

|z|2
dξ ≥

(
1

2
− 1

p+ 1

)
‖un‖2

W

− C‖un‖2
W = C‖un‖2

W ,

(5.93)

with p + 1 > 2. Thus, we have ‖un‖W ≤ C. Therefore, by Lemma 5.24, we have
strong convergence of {un} in W . �

Finally, let us give main result of this section.

Theorem 5.26. Problem (5.80) has at least two positive solutions.

Proof. Let us construct two solutions of the problem (5.80). By using Lemma 5.25,
any (PS)c subsequence of I has strong convergence in W . Also, we have that

I(0) = 0,

and by taking ρ as in Lemma 5.23, there exists α such that I(u) ≥ α > 0 = I(0),
where

u ∈ W, and ‖u‖W = ρ.

Therefore, now applying the mountain pass theorem, we get a critical point of the
functional I(u) which is a positive weak solution of problem (5.80).

Now let us construct another solution of (5.80). By Lemma 5.22, there exist positive
constants ρ, α > 0 such that ‖u‖W = ρ and I(u) ≥ α for all u ∈ W . Hence, we can
choose

ρ1 = {inf
ρ∈R

: I(u) > 0, ∀u ∈ W, with ‖u‖X = ρ}.

From this, we have ρ1 > 0, then I(u)¡0. Assume that ρ2 > ρ1, s.t. I(u) is a non-
decreasing functional with ρ1 < ‖u‖X < ρ2. Then let us define the following smooth
function θ(η) in the following form: θ(η) = 1 if η ≤ ρ1, and θ(η) = 0 if η ≥ ρ2.

We define the following energy functional:

I2(u) :=
1

2

∫
Ω

|∇Hu|2dξ −
λθ(‖u‖W )

2

∫
Ω

u2
+

|z|2
dξ − 1

p+ 1

∫
Ω

up+1
+ dξ. (5.94)

If ‖u‖W ≤ ρ1, then I2(u) = I(u) and ‖u‖W ≥ ρ2, so we have

I2(u) :=
1

2

∫
Ω

|∇Hu|2dξ −
1

p+ 1

∫
Ω

up+1
+ dξ.

It easy to see that I2 is a coercive functional. By W is a Hilbert space, we have that
the functional lower semi-continuity. Then we can say there exists minimum point
of I2 with negative energy, it means I2 has a minimum point. It gives the second
solution. �
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5.4.2. On stratified groups. It is well-known fact, that the Heisenberg group is the
most popular example of stratified groups. In this subsection extended results on
stratified groups.

Let us give the Lp-Caffarelli–Kohn–Nirenberg inequality on stratified groups.

Theorem 5.27 (Theorem 3.1., [29]). Let G be a stratified group with N1 being the
dimension of the first stratum, and let α, β ∈ R. Then for any f ∈ C∞0 (G\{x′ = 0}),
and all 1 < p <∞, we have

|N1 − γ|
p

∥∥∥∥∥ f

|x′|
γ
p

∥∥∥∥∥
Lp(G)

≤
∥∥∥∥∇Gf

|x′|α

∥∥∥∥
Lp(G)

∥∥∥∥∥ f

|x′|
β
p−1

∥∥∥∥∥
Lp(G)

, (5.95)

where γ = α+β+1 and | · | is the Euclidean norm on RN . If γ = N1then the constant
|N1−γ|

p
is sharp.

If α = 0 and β = p− 1, we obtain the first stratum Hardy inequality on G.
Let Ω ⊂ G be a measurable set with sufficiently smooth boundary ∂Ω such that
{x′ = 0} /∈ Ω. Assume that dimension of the first stratum N1 > 2, 0 < λ < λ =
(N1−2)4

2
and 1 < p < 2∗ − 1 = 2Q

Q−2
− 1. Let us consider the following problem:

Lu(x)− λu(x)
|x′|2 = up(x), x ∈ Ω ⊂ G,

u > 0, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

(5.96)

Theorem 5.28. Problem (5.96) has at least two positive solutions.

Proof. The proof follows the almost same lines of the proof of Theorem 5.26. Only
difference is that now we use, that is, stratified group versions of Theorem 3.45 and
Theorem 5.27 instead of Theorem 3.45 and Theorem 5.21, respectively. �

5.5. Existence of the weak solution for the fractional sub-Laplacian with
Hardy potential. Let us continue our studying of the existence of the weak solution.
In this section, we show existence of the weak solution for semilinear equation with
fractional sub-Laplacian and Hardy potential. Since then, fractional analogues of this
problem on Euclidean setting have been considered by many different authors, for
example, in [87, 88, 89] and [90]. In addition, we refer to [91, 92] and [93] as well as
references therein for fractional Laplacian problems with the Hardy potential.

Let us consider the following problem with Hardy potential on G:{
(−∆s)u(x)− λ u(x)

|x|2s = up, x ∈ Ω \ {0} ⊂ G,
u(x) = 0, x ∈ G \ Ω,

(5.97)

where Ω is an open bounded domain in G with smooth boundary, 0 ≤ λ < λ is the
best constant of the fractional Hardy inequality on G, 1 < p < 2∗ − 1 and 2s < Q.

Setting S := W s,2
0 (Ω), let us define the fractional Sobolev space on G with the

norm

‖u‖2
S := [u]2s,2 − λ

∫
Ω

|u|2

|x|2s
dx, (5.98)
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which is equivalent (by the fractional Hardy inequality) to the norm

‖u‖W s,2
0 (Ω) = [u]s,2, (5.99)

where [·]s,2 = [·]s,2,Ω is the Gagliardo semi-norm which is defined in (2.14).

Definition 5.29. We say u : Ω→ R is a weak solution of (5.97), if u ∈ S, such that∫
Ω

∫
Ω

(u(x)− u(y))(ϕ(x)− ϕ(y))

|y−1x|Q+2s
dxdy − λ

∫
Ω

u+ϕ

|x|2s
dx−

∫
Ω

up+ϕdx = 0, (5.100)

for all ϕ ∈ S, where u+ = max{u, 0}.

The energy functional corresponding to (5.97) can be given by the expression

I(u) =
1

2

(∫
Ω

∫
Ω

|u(x)− u(y)|2

|y−1x|Q+2s
dxdy − λ

∫
Ω

(u+)2

|x|2s
dx

)
− 1

p+ 1

∫
Ω

up+1
+ dx. (5.101)

Note that I is a Fréchet differentiable functional with respect to u ∈ S for any ϕ ∈ S,
so we have

〈I ′(u), ϕ〉 =

∫
Ω

∫
Ω

(u(x)− u(y))(ϕ(x)− ϕ(y))

|y−1x|Q+2s
dxdy − λ

∫
Ω

u+ϕ

|x|2s
dx

−
∫

Ω

up+ϕdx. (5.102)

For the functional I, let us verify the assumptions of Theorem 5.11.

Lemma 5.30. Let Ω be a Haar measurable set in G. Then there exist positive con-
stants ρ, α > 0 such that ‖u‖S = ρ and I(u) ≥ α for all u ∈ S.

Proof. Firstly, by Sobolev embedding theorem, by using the facts that the norms
(5.98) and (5.99) are equivalent, 2 < p + 1 < 2∗ = 2Q

Q−2s
and L2∗(Ω) ↪→ Lp+1(Ω), we

have

‖u‖Lp+1(Ω) ≤ C‖u‖L2∗ (Ω)

(3.37) with β=0

≤ C‖u‖S. (5.103)

Now we give an estimate to the functional I(u). So, using above embedding we
compute

I(u) =
1

2

(∫
Ω

∫
Ω

|u(x)− u(y)|2

|y−1x|Q+2s
dxdy − λ

∫
Ω

|u|2

|x|2s
dx

)
− 1

p+ 1

∫
Ω

up+1
+ dx

=
1

2
‖u‖2

S −
1

p+ 1

∫
Ω

up+1
+ dx

(5.103)

≥ 1

2
‖u‖2

S −
C

p+ 1
‖u‖p+1

S .

(5.104)

Let u ∈ W and ‖u‖S = ρ > 0. By choosing ρ sufficiently small, we have α :=
ρ2

2
− Cρp+1

p+1
> 0, thus, we arrive at

inf
u∈W,‖u‖W=ρ

I(u) ≥ ρ2

2
− Cρp+1

p+ 1
> 0. (5.105)

�
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Lemma 5.31. Under assumptions of Lemma 5.30, there exists 0 < v ∈ S a.e. in W ,
‖v‖S > ρ and I(v) < α, where the constants α and ρ are given as in Lemma 5.30.

Proof. Let us fix ‖u‖W = 1 and u ≥ 0 a.e. in G with t > 0. Then we calculate

I(tu) =
1

2
‖tu‖2

S −
1

p+ 1

∫
Ω

(tu+)p+1dx =
t2

2
− tp+1

p+ 1

∫
Ω

up+1
+ dx. (5.106)

By the assumption p > 1 and by taking t → +∞, we get I(tu) → −∞. Thus, by
setting v = βu, with β sufficiently large, we arrive at the desired result. �

Lemma 5.32. Let {un} be a bounded sequence in S such that I ′(un)→ 0, as n→∞.
Then there exists u ∈ S such that, up to a subsequence, ‖un − u‖S → 0, as n→∞.

Proof. Since the norm ‖ · ‖S is equivalent to ‖ · ‖S∗ , for the norm ‖ · ‖S∗ there exists
u ∈ S and a subsequence {un}, such that,

un ⇀ u, in S, (5.107)

and
un → u, in Lr(G), 1 ≤ r < 2∗, un → u, a.e. in G. (5.108)

From this fact for p+ 1 < 2∗ and I ′(un)→ 0 as n→∞ we have

lim
n→∞

‖un‖2
S = lim

n→∞
‖un‖p+1

Lp+1(Ω) = ‖u‖p+1
Lp+1(Ω). (5.109)

Similarly, we get

lim
n→∞

(∫
Ω

∫
Ω

(un(x)− un(y))(u(x)− u(y))

|y−1x|Q+2s
dxdy − λ

∫
Ω

u(un)+

|x|2s
dx

)
= ‖u‖p+1

Lp+1(Ω). (5.110)

Thus, we have
‖un − u‖S → 0, n→∞.

�

Lemma 5.33. Assume that {un} be a (PS)c sequence such that Definition 5.10.
Then there exists u ∈ S such that

lim
n→∞

‖un − u‖S = 0. (5.111)

Proof. By using Definition 5.10, we obtain

c+ o(1) = I(un)− 1

p+ 1
〈I ′(un), un〉 =

(
1

2
− 1

p+ 1

)
[un]2s,2

− λ
(

1

2
− 1

p+ 1

)∫
Ω

(un)2
+

|x|2s
dx

(3.37) with β=2s

≥
(

1

2
− 1

p+ 1

)
[un]2s,2

− C[un]2s,2 = C[un]2s,2,

(5.112)

with p+1 > 2. Thus, we have ‖un‖S ≤ C. Therefore, by Lemma 5.32, we have strong
convergence of {un} in S. �

We are now in a position to present the main result of this section.

Theorem 5.34. Assume that Ω ⊂ G be a Haar measurable set. Then there exists a
non-trivial weak solution of problem (5.97).
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Proof. By using Lemma 5.33, any (PS)c subsequence of I(un) has strong convergence
in S. Also, we have that

I(0) = 0,

and by taking ρ as in Lemma 5.30, there exists α such that I(u) ≥ α > 0 = I(0),
where

u ∈ S, and ‖u‖S = ρ.

Therefore, now applying the mountain pass theorem, we have a critical point of the
functional I(u) which is a non-trivial weak solution of problem (5.97). �

5.6. Blow-up result to heat equation with fractional sub-Laplacian and
logarithmic nonlinearity on homogeneous groups. Firstly, heat equation with
logrithmic nonlinearity with Cauchy-Dirichlet problem was considered in [94]:

ut(x, t)−∆xu(x, t) = u log |u|, (x, t) ∈ Ω× (0,+∞),

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, (x, t) ∈ ∂Ω× (0,+∞).

(5.113)

Then they showed global solvability of solution by potential wells method. Also, they
showed the following blow-up theorem (in the Euclidean setting):

Theorem 5.35. [94] Assume that u0 ∈ H1
0 (Ω) and

J(u0) =
1

2

∫
Ω

|∇u0|2dx−
1

2

∫
Ω

|u0|2 log |u0|dx+
1

4

∫
Ω

|u0|2dx ≤M, (5.114)

and

I(u0) =

∫
Ω

|∇u0|2dx−
∫

Ω

|u0|2 log |u0|dx < 0. (5.115)

Then the weak solution of the problem (5.113) blows up at +∞.

Moreover, in [95] it is showed the condition J(u0) ≤ M is unnecessary to blow-up
at infinity to a solution of the problem (5.113). In this section, we considered the
heat equation with the fractional sub-Laplacian with logarithmic nonlinearity and
we obtain the blow-up result. That is, we extend the blow-up theorem from [95] to
general homogeneous groups.

Let us consider the following Cauchy-Dirichlet fractional heat equation on the
homogeneous group:

∂u(x,t)
∂t

+ (−∆s)u(x, t) = u(x, t) log |u(x, t)|, (x, t) ∈ Ω× (0,+∞), Ω ⊂ G,
u(x, t) = 0, (x, t) ∈ G \ Ω× (0,+∞),

u(x, 0) = u0(x),

(5.116)
where ∆s is the fractional sub-Laplacian with s ∈ (0, 1).

For simplicity, we introduce the notations Hs
0(Ω) := W s,2

0 (Ω) and [u]s := [u]s,2,Ω.
Let us give the definition of a weak solution.

Definition 5.36. Let T > 0. A function u : Ω × [0,+∞) → R, u = u(x, t) ∈
L∞(0, T ;Hs

0(Ω)) with ∂u
∂t
∈ L2(0, T ;L2(Ω)) is a called a weak solution of problem
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(5.116) in Ω× [0,+∞), if u0 ∈ Hs
0(Ω) and u satisfies (5.116) in the sense of distribu-

tion, ∫
Ω

utϕdx+ 〈(−∆s)u, ϕ〉 =

∫
Ω

u log |u|ϕdx, (5.117)

for any ϕ ∈ Hs
0(Ω), t ∈ (0,+∞).

Let us introduce the definition of the blow-up in infinite time.

Definition 5.37. Let u(x, t) be a weak solution of (5.116). We say that u(x, t) blows
up at +∞ if

lim
t→+∞

‖u(·, t)‖2
L2(Ω) = +∞. (5.118)

Let us consider the following energy functionals

J(u) =
1

2
[u]2s −

1

2

∫
Ω

u2 log |u|dx+
1

4

∫
Ω

|u|2dx, (5.119)

and

I(u) = [u]2s −
∫

Ω

u2 log |u|dx. (5.120)

By combining last facts, we have relation between two functionals in the following
form:

J(u) =
1

2
I(u) +

1

4

∫
Ω

|u|2dx. (5.121)

We have the following energy identity for (5.116).

Lemma 5.38. Assume that u is a weak solution of the problem (5.116). Then we
have ∫ t

0

‖uτ‖2
L2(Ω)dτ + J(u) = J(u0), ∀t ∈ (0,+∞). (5.122)

Proof. By taking inner product between (5.116) and ut over Ω, we get∫
Ω

|ut|2dx+ 〈(−∆s)u, ut〉 =

∫
Ω

utu log |u|dx. (5.123)

For the second term on the left hand side of (5.123), we have

〈(−∆s)u, ut〉 =

∫
Ω

∫
Ω

(u(x, t)− u(y, t))(ut(x, t)− ut(y, t))
|y−1x|Q+2s

dxdy

=
1

2

d

dt

∫
Ω

∫
Ω

|u(x, t)− u(y, t)|2

|y−1x|Q+2s
dxdy =

1

2

d[u]2s
dt

. (5.124)

On the right hand side of (5.123), we get

du2 log |u|
dt

= 2utu log |u|+ uut, (5.125)

then∫
Ω

utu log |u|dx =
1

2

d

dt

∫
Ω

u2 log |u|dx− 1

2

∫
Ω

uutdx

=
1

2

d

dt

∫
Ω

u2 log |u|dx− 1

4

d

dt

∫
Ω

u2dx. (5.126)
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By using (5.124) and (5.126) in (5.123), we obtain∫
Ω

|ut|2dx+
d

dt

(
1

2
[u]2s −

1

2

∫
Ω

u2 log |u|dx+
1

4

∫
Ω

u2dx

)
=

∫
Ω

|ut|2dx+
d

dt
J(u) = 0. (5.127)

Integrating over (0, t), we arrive at∫ t

0

‖uτ‖2
L2(Ω)dτ +

∫ t

0

dJ(u)

dτ
dτ = 0, (5.128)

that is, ∫ t

0

‖uτ‖2
L2(Ω)dτ + J(u) = J(u0). (5.129)

�

Now we are in the position to present the main result of this section.

Theorem 5.39. Assume that u is a weak solution of (5.116) with u0 ∈ Hs
0(Ω) and

I(u0) < 0. Then
lim
t→+∞

‖u(·, t)‖2
L2(Ω) = +∞. (5.130)

Proof. Firstly, by combining (5.117) with u = ϕ we have

d

dt
‖u‖2

L2(Ω) =
d

dt

∫
Ω

u2dx = 2

∫
Ω

uutdx

= −2

(
〈(−∆s)u, u〉 −

∫
Ω

u2 log |u|dx
)

= −2I(u). (5.131)

From last fact, (5.117) and (5.120), we get

dI(u)

dt
=

d

dt

(
[u]2s −

∫
Ω

u2 log |u|dx
)

= 2

∫
Ω

∫
Ω

(u(x, t)− u(y, t))(ut(x, t)− ut(y, t))
|y−1x|Q+2s

dxdy

− 2

∫
Ω

u(x, t)ut(x, t) log |u(x, t)|dx−
∫

Ω

u(x, t)ut(x, t)dx

= 2〈(−∆s)u, ut〉 − 2

∫
Ω

u(x, t)ut(x, t) log |u(x, t)|dx−
∫

Ω

u(x, t)ut(x, t)dx

=

∫
Ω

|ut(x, t)|2dx−
∫

Ω

u(x, t)ut(x, t)dx

= −2‖ut‖2
L2(Ω) −

∫
Ω

u(x, t)ut(x, t)dx

= −2‖ut‖2
L2(Ω) + [u]2s −

∫
Ω

u2(x, t) log |u(x, t)|dx

= −2‖ut‖2
L2(Ω) + I(u) ≤ I(u).

(5.132)
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Then by combining Grönwall–Bellman’s inequality and I(u0) < 0 in the last fact we
have

I(u) ≤ I(u0)et ≤ I(u0) < 0, ∀t ∈ (0,+∞). (5.133)

It means that I(u(x, t)) is decreasing functional with respect to the argument t. By
setting

A(t) =

∫ t

0

‖u‖2
L2(Ω)dt, A

′(t) = ‖u‖2
L2(Ω), (5.134)

and by Definition 5.36 we have

A′′(t) = 2

∫
Ω

uutdx = −2[u]s + 2

∫
Ω

u2 log |u|dx = −2I(u). (5.135)

A simple calculation gives

(logA(t))′ =
A′(t)

A(t)
, (logA(t))′′ =

A′′(t)A(t)− (A′(t))2

A2(t)
. (5.136)

Now let us estimate A′′(t)A(t)−(A′(t))2

A2(t)
. By using (5.134), (5.120) and Lemma 5.38, we

obtain

A′′(t) = −2I(u) = −4J(u) + A′(t) = −4J(u0) + 4

∫ t

0

‖uτ‖2
L2(Ω)dτ + A′(t). (5.137)

Similarly, from (5.134) we obtain

(A′(t))2 = ‖u‖4
L2(Ω) = ‖u‖4

L2(Ω) + 2‖u‖2
L2(Ω)‖u0‖2

L2(Ω) − 2‖u‖2
L2(Ω)‖u0‖2

L2(Ω)

+ ‖u0‖4
L2(Ω) − ‖u0‖4

L2(Ω) =

(∫
Ω

(
u2 − u2

0

)
dx

)2

+ 2‖u‖2
L2(Ω)‖u0‖2

L2(Ω) − ‖u0‖4
L2(Ω)

=

(∫
Ω

∫ t

0

∂u2

∂τ
dτdx

)2

+ 2‖u‖2
L2(Ω)‖u0‖2

L2(Ω) − ‖u0‖4
L2(Ω) = 4

(∫ t

0

∫
Ω

uτudxdτ

)2

+ 2‖u‖2
L2(Ω)‖u0‖2

L2(Ω) − ‖u0‖4
L2(Ω). (5.138)

Finally, we obtain

(A′(t))2 = 4

(∫ t

0

∫
Ω

uτudxdτ

)2

+ 2‖u‖2
L2(Ω)‖u0‖2

L2(Ω) − ‖u0‖4
L2(Ω). (5.139)

It follows that

A′′(t)A(t)− (A′(t))2 = −4J(u0)A(t) + 4

∫ t

0

‖uτ‖2
L2(Ω)dτA(t) + A′(t)A(t)

− 4

(∫ t

0

∫
Ω

uτudxdτ

)2

− 2‖u‖2
L2(Ω)‖u0‖2

L2(Ω) + ‖u0‖4
L2(Ω)

= 4

(∫ t

0

‖uτ‖2
L2(Ω)dτ

∫ t

0

‖u‖2
L2(Ω) −

(∫ t

0

∫
Ω

uτudxdτ

)2
)

− 4J(u0)A(t) + A′(t)A(t)− 2‖u0‖2
L2(Ω)A

′(t) + ‖u0‖4
L2(Ω).

(5.140)



125

By using the Cauchy-Bunyakovsky-Schwarz inequality, we have

A′′(t)A(t)− (A′(t))2 = 4

(∫ t

0

‖uτ‖2
L2(Ω)dτ

∫ t

0

‖u‖2
L2(Ω) −

(∫ t

0

∫
Ω

uτudxdτ

)2
)

− 4J(u0)A(t) + A′(t)A(t)− 2‖u0‖2
L2(Ω)A

′(t) + ‖u0‖4
L2(Ω)

≥ A′(t)

(
A(t)

2
− ‖u0‖2

L2(Ω)

)
+ A(t)

(
A′(t)

2
− 4J(u0)

)
.

(5.141)

By using (5.134), (5.135) and I(u) ≤ I(u0) < 0, we get

A′(t) = A′(0)− 2

∫ t

0

I(u(x, τ))dτ = −2I(u0)t ≥ 0, t ≥ 0,

A(t) = −I(u0)t2 ≥ 0, t ≥ 0.

(5.142)

By combining (5.142) and (5.120) in (5.141), we compute

A′′(t)A(t)− (A′(t))2 ≥ A′(t)

(
A(t)

2
− ‖u0‖2

L2(Ω)

)
+ A(t)

(
A′(t)

2
− 4J(u0)

)
≥ A′(t)

(
−I(u0)t2

2
− ‖u0‖2

L2(Ω)

)
+ A(t) (−I(u0)t− 4J(u0))

≥ A′(t)

(
−I(u0)t2

2
− ‖u0‖2

L2(Ω)

)
+ A(t)

(
−I(u0)t− 2I(u0)− ‖u0‖2

L2(Ω)

)
≥ A′(t)

(
−I(u0)t2

2
− ‖u0‖2

L2(Ω)

)
+ A(t)

(
−I(u0)(t+ 2)− ‖u0‖2

L2(Ω)

)
.

(5.143)

From Definition 5.36, we have that u0 ∈ Hs
0(Ω) and let

t > t0 = max

{
‖u0‖2

L2(Ω)

−I(u0)
− 2,

√
2‖u0‖L2(Ω)√
−I(u0)

}
≥ 0. (5.144)

Firstly, let us consider the case

t0 = max

{
‖u0‖2

L2(Ω)

−I(u0)
− 2,

√
2‖u0‖L2(Ω)√
−I(u0)

}
=

√
2‖u0‖L2(Ω)√
−I(u0)

. (5.145)
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By using this fact in (5.143), we get

A′′(t)A(t)− (A′(t))2

≥ A′(t)

(
−I(u0)t2

2
− ‖u0‖2

L2(Ω)

)
+ A(t)

(
−I(u0)(t+ 2)− ‖u0‖2

L2(Ω)

)
≥ A′(t)

(
−I(u0)t20

2
− ‖u0‖2

L2(Ω)

)
+ A(t)

(
−I(u0)(t0 + 2)− ‖u0‖2

L2(Ω)

)
= A′(t)

(
‖u0‖2

L2(Ω) − ‖u0‖2
L2(Ω)

)
+ A(t)

(
−I(u0)(t0 + 2)− ‖u0‖2

L2(Ω)

)
= A(t)

(
−I(u0)(t0 + 2)− ‖u0‖2

L2(Ω)

)
≥ A(t)

(
−I(u0)

(
‖u0‖2

L2(Ω)

−I(u0)
− 2 + 2

)
− ‖u0‖2

L2(Ω)

)
= 0.

(5.146)

Hence, we obtain

A′′(t)A(t)− (A′(t))2 ≥ 0. (5.147)

Similarly, in the other case

t0 = max

{
‖u0‖2

L2(Ω)

−I(u0)
− 2,

‖u0‖L2(Ω)√
−I(u0)

}
=
‖u0‖2

L2(Ω)

−I(u0)
− 2, (5.148)

we have

A′′(t)A(t)− (A′(t))2 ≥ 0. (5.149)

So we get

(logA(t))′′ =
A′′(t)A(t)− (A′(t))2

A2(t)
, (5.150)

and integrating over (t0, t), we have

(logA(t))′ − (logA(t))′|t=t0 =

∫ t

t0

A′′(τ)A(τ)− (A′(τ))2

A2(τ)
dτ ≥ 0. (5.151)

Hence, we have

(logA(t))′ ≥ (logA(t))′|t=t0 . (5.152)

Similarly, we have

A′(t0)

A(t0)
(t− t0) = (logA(t))′|t=t0(t− t0) ≤

∫ t

t0

log(A(τ))′dτ = log(A(t))− log(A(t0)).

(5.153)
Finally, we arrive at

A(t0)e
A′(t0)
A(t)

(t−t0) ≤ A(t). (5.154)
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By summarising above facts (5.152)-(5.154) with t ≥ t0, we compute

‖u‖2
L2(Ω) = A′(t) = (logA(t))′A(t) ≥ (logA(t))′|t=t0A(t) =

A′(t0)

A(t0)
A(t) =

A(t)

A(t0)
A′(t0)

≥ A′(t0)e
A′(t0)
A(t0)

(t−t0)
= ‖u(·, t0)‖2

L2(Ω)e
A′(t0)
A(t0)

(t−t0) ≥ ‖u0‖2
L2(Ω)e

A′(t0)
A(t0)

(t−t0)
.

(5.155)

That is,
lim
t→+∞

‖u(·, t)‖2
L2(Ω) = +∞. (5.156)

�

Remark 5.40. In the Abelian (Euclidean) case G = (RN ,+), we have Q = N and
| · | = | · |E (| · |E is the Euclidean distance), if s→ 1− we get blow-up result at infinity
in [94] and [95].

5.7. Non blow-up and blow-up results for the heat equation on stratified
groups. Similarly to previous section, we prove non blow-up and blow-up results for
the heat equation on stratified groups.

Firstly, let us give Green’s formulae which is play a key role in our proof.

Theorem 5.41 (Green’s identity, [96]). Let Q ≥ 3 be a homogeneous dimension of
a stratified group G and dx be the volume element on G. Let v ∈ C1(Ω) ∩ C(Ω) and
u ∈ C2(Ω) ∩ C1(Ω). Then the following Green’s identity holds∫

Ω

(
(∇̃v)u+ v∆Gu

)
dx =

∫
∂Ω

|u|p−2v〈∇̃u, dx〉, (5.157)

where

∇̃u =

N1∑
k=1

(Xku)Xk.

In this section, we obtain a non-blow-up result for the following problem on strat-
ified group:

∂u(x,t)
∂t
− µ∆Gu(x, t) = u(x, t) ln |u(x, t)|, (x, t) ∈ Ω× (0, T ), Ω ⊂ G,

u(x, t)
∣∣∣
∂Ω

= 0, t ∈ (0, T ),

u(x, 0) = u0(x) x ∈ Ω,

(5.158)

where ∆G is the sub-Laplacian, µ is a positive constant and Ω is a bounded domain
with smooth boundary.

Let us recall the definition of a weak solution.

Definition 5.42. Let T > 0. A function u : Ω × [0,+∞) → R, u = u(x, t) ∈
L∞(0, T ;S1,2

0 (Ω)) with ∂u
∂t
∈ L2(0, T ;L2(Ω)) is a called a weak solution of problem

(5.158) in Ω × [0,+∞), if u0 ∈ S1,2
0 (Ω) and u satisfies (5.158) in the sense of distri-

bution ∫
Ω

utϕdx− µ
∫

Ω

ϕ∆Gudx =

∫
Ω

u ln |u|ϕdx, (5.159)

for any ϕ ∈ S1,2
0 (Ω), t ∈ (0, T ).
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Let us also recall the definition of blow-up at finite time.

Definition 5.43. Let u(x, t) be a weak solution of (5.158). We say that u(x, t) blows
up at T < +∞ if

lim
t→T−

‖u(·, t)‖2
L2(Ω) = +∞. (5.160)

We use the following notations for energy functionals

J(u) =
µ

2

∫
Ω

|∇Gu|2dx−
1

2

∫
Ω

u2 ln |u|dx+
1

4

∫
Ω

|u|2dx, (5.161)

and

I(u) = µ

∫
Ω

|∇Gu|2dx−
∫

Ω

u2 ln |u|dx, (5.162)

where µ > 0. Thus, we have

J(u) =
1

2
I(u) +

1

4

∫
Ω

|u|2dx. (5.163)

Also, one of the main tool is the logarithmic Sobolev-Follan-Stein inequality which is
defined in Theorem 3.45.

Theorem 5.44. Suppose that u is a weak solution of (5.158) with u0 ∈ S1,2
0 (Ω) and

µ ≥ QCS, where CS is the Sobolev-Folland-Stein constant. Then u does not blow-up
at finite time.

Proof. Let us define the following function:

A(t) :=

∫ t

0

‖u(·, τ)‖2
L2(Ω)dτ,

then we obtain

A′(t) = ‖u(·, t)‖2
L2(Ω),

A′′(t) = −2I(u).
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By using the logarithmic Sobolev-Folland-Sobolev inequality (Theorem 3.45) with
a = 1, we get

A′(t) lnA′(t)− A′′(t) = ‖u‖2
L2(Ω) ln ‖u‖2

L2(Ω) + 2I(u)

= 2‖u‖2
L2(Ω) ln ‖u‖L2(Ω) + 2I(u)

= 2‖u‖2
L2(Ω) ln ‖u‖L2(Ω) + 2µ‖∇Gu‖2

L2(Ω) − 2

∫
Ω

u2 ln |u|dx

≥ 2‖u‖2
L2(Ω) ln ‖u‖L2(Ω) + µ‖∇Gu‖2

L2(Ω) − 2

∫
Ω

u2 ln |u|dx

≥ 2‖u‖2
L2(Ω) ln ‖u‖L2(Ω) +QCS‖∇Gu‖2

L2(Ω) − 2

∫
Ω

u2 ln |u|dx

= QCS‖∇Gu‖2
L2(Ω) − 2

∫
Ω

|u|2 ln
|u|

‖u‖L2(Ω)

dx

(3.159)

≥ 2

∫
G
|u|2 ln

|u|
‖u‖L2(G)

dx+Q‖u‖2
L2(G) − 2

∫
Ω

|u|2 ln
|u|

‖u‖L2(Ω)

dx

= Q‖u‖2
L2(G).

(5.164)

It implies

A′(t) lnA′(t)− A′′(t) ≥ Q‖u‖2
L2(G) ≥ 0. (5.165)

That is, A′(t) lnA′(t) ≥ A′′(t) which yields

lnA′(t) ≥ (lnA′(t))
′
.

Now by integrating it over (0, t), we obtain

ln ‖u(·, t)‖2
L2(Ω) = lnA′(t) ≤ et lnA′(0) = et ln ‖u0‖2

L2(Ω).

Finally, we arrive at

‖u(·, t)‖L2(Ω) ≤ ‖u0‖e
t

L2(Ω). (5.166)

It means ‖u(·, t)‖2
L2(Ω) is bounded at finite time T ∗ ∈ (0,∞). �

Then let us show blow-up result in infinite time. Let us consider the following
initial-boundary (Cauchy-Dirichlet) heat equation on stratified groups:

∂u(x,t)
∂t
− µ∆Gu(x, t) = u(x, t) ln |u(x, t)|, (x, t) ∈ Ω× (0,+∞), Ω ⊂ G,

u(x, t) = 0, (x, t) ∈ Ω× (0,+∞),

u(x, 0) = u0(x),

(5.167)
where ∆G is the sub-Laplacian and µ > 0.

Definition 5.45. Assume that u(x, t) be a weak solution of (5.167). We say that
u(x, t) blows up at +∞ if

lim
t→+∞

‖u(·, t)‖2
L2(Ω) = +∞. (5.168)

We have the following energy identity for problem (5.167).
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Lemma 5.46. Suppose that u is a weak solution of the problem (5.167). Then we
have ∫ t

0

‖uτ‖2
L2(Ω)dτ + J(u) = J(u0), ∀t ∈ (0,+∞), (5.169)

where the functional J is defined by (5.161).

Proof. As usual, multiplying by ut and integrating over Ω in (5.167), we get∫
Ω

|ut|2dx− µ
∫

Ω

∆Guutdx =

∫
Ω

utu ln |u|dx. (5.170)

By using Green’s identity to the second term on the left hand side of (5.170), we
obtain

−
∫

Ω

∆Gu(x, t)ut(x, t)dx =

∫
Ω

∇Gu(x, t) · ∇Gut(x, t)dx =
1

2

d

dt
‖∇Gu‖2

L2(Ω). (5.171)

On the other hand, we have

du2 ln |u|
dt

= 2utu ln |u|+ uut, (5.172)

that is,∫
Ω

utu ln |u|dx =
1

2

d

dt

∫
Ω

u2 ln |u|dx− 1

2

∫
Ω

uutdx

=
1

2

d

dt

∫
Ω

u2 ln |u|dx− 1

4

d

dt

∫
Ω

u2dx. (5.173)

By combining (5.171) and (5.173) with (5.170), we get∫
Ω

|ut|2dx+
d

dt

(
µ

2
‖∇Gu‖2

L2(Ω) −
1

2

∫
Ω

u2 ln |u|dx+
1

4

∫
Ω

u2dx

)
=

∫
Ω

|ut|2dx+
d

dt
J(u) = 0. (5.174)

Now integrating over (0, t), we arrive at∫ t

0

‖uτ‖2
L2(Ω)dτ +

∫ t

0

dJ(u)

dτ
dτ = 0, (5.175)

that is, ∫ t

0

‖uτ‖2
L2(Ω)dτ + J(u) = J(u0). (5.176)

�

Now we are in the position to present one of the main result of this section.

Theorem 5.47. Assume that u be a weak solution of (5.167) with u0 ∈ S1,2
0 (Ω) and

I(u0) < 0. Then

lim
t→+∞

‖u(·, t)‖2
L2(Ω) = +∞. (5.177)
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Proof. Firstly, by taking (5.159) with u = ϕ we get

d

dt
‖u‖2

L2(Ω) =
d

dt

∫
Ω

u2dx = 2

∫
Ω

uutdx

= −2

(
µ‖∇Gu‖2

L2(Ω) −
∫

Ω

u2 ln |u|dx
)

= −2I(u). (5.178)

By combining last fact with (5.159) and (5.162), we get

dI(u)

dt
=

d

dt

(
µ‖∇Gu‖2

L2(Ω) −
∫

Ω

u2 ln |u|dx
)

= 2µ

∫
Ω

∇Gu · ∇Gutdx− 2

∫
Ω

u(x, t)ut(x, t) ln |u(x, t)|dx−
∫

Ω

u(x, t)ut(x, t)dx

= −2µ

∫
Ω

ut∆Gudx− 2

∫
Ω

u(x, t)ut(x, t) ln |u(x, t)|dx−
∫

Ω

u(x, t)ut(x, t)dx

= −2

∫
Ω

|ut(x, t)|2dx−
∫

Ω

u(x, t)ut(x, t)dx

= −2‖ut‖2
L2(Ω) −

∫
Ω

u(x, t)ut(x, t)dx

= −2‖ut‖2
L2(Ω) + µ‖∇Gu‖2

L2(Ω) −
∫

Ω

u2(x, t) ln |u(x, t)|dx

= −2‖ut‖2
L2(Ω) + I(u) ≤ I(u).

(5.179)

From Grönwall–Bellman’s inequality and I(u0) < 0 we have

I(u) ≤ I(u0)et ≤ I(u0) < 0, ∀t ∈ (0, T ). (5.180)

It shows that I(u(x, t)) is a decreasing functional with respect to t.
By setting

A(t) =

∫ t

0

‖u(·, τ)‖2
L2(Ω)dτ, A

′(t) = ‖u(·, t)‖2
L2(Ω), (5.181)

and by Definition 5.159 we have

A′′(t) = 2

∫
Ω

uutdx = −2‖∇Gu‖2
L2(Ω) + 2

∫
Ω

u2 ln |u|dx = −2I(u). (5.182)

Now let us estimate

(lnA(t))′′ =
A′′(t)A(t)− (A′(t))2

A2(t)
.

From (5.181), (5.162) and Lemma 5.46, we get

A′′(t) = −2I(u) = −4J(u) + A′(t) = −4J(u0) + 4

∫ t

0

‖uτ‖2
L2(Ω)dτ + A′(t). (5.183)
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Similarly, from (5.181) we obtain

(A′(t))2 = ‖u‖4
L2(Ω)+2‖u‖2

L2(Ω)‖u0‖2
L2(Ω)−2‖u‖2

L2(Ω)‖u0‖2
L2(Ω)+‖u0‖4

L2(Ω)−‖u0‖4
L2(Ω)

= 4

(∫ t

0

∫
Ω

uτudxdτ

)2

+ 2‖u‖2
L2(Ω)‖u0‖2

L2(Ω) − ‖u0‖4
L2(Ω). (5.184)

Hence, we have

(A′(t))2 = 4

(∫ t

0

∫
Ω

uτudxdτ

)2

+ 2‖u‖2
L2(Ω)‖u0‖2

L2(Ω) − ‖u0‖4
L2(Ω). (5.185)

It follows that

A′′(t)A(t)− (A′(t))2 = 4

(∫ t

0

‖uτ‖2
L2(Ω)dτ

∫ t

0

‖u‖2
L2(Ω) −

(∫ t

0

∫
Ω

uτudxdτ

)2
)

− 4J(u0)A(t) + A′(t)A(t)− 2‖u0‖2
L2(Ω)A

′(t) + ‖u0‖4
L2(Ω).

(5.186)

From the Cauchy-Bunyakovsky-Schwarz inequality, we obtain

A′′(t)A(t)− (A′(t))2 ≥ A′(t)

(
A(t)

2
− ‖u0‖2

L2(Ω)

)
+ A(t)

(
A′(t)

2
− 4J(u0)

)
.

(5.187)

By using (5.181), (5.182) and I(u) ≤ I(u0) < 0, we have

A′(t) = A′(0)− 2

∫ t

0

I(u(x, τ))dτ = −2I(u0)t ≥ 0, t ≥ 0,

A(t) = −I(u0)t2 ≥ 0, t ≥ 0.

(5.188)

By using (5.188) and (5.162) in (5.187), we calculate

A′′(t)A(t)− (A′(t))2 ≥ A′(t)

(
A(t)

2
− ‖u0‖2

L2(Ω)

)
+ A(t)

(
A′(t)

2
− 4J(u0)

)
≥ A′(t)

(
−I(u0)t2

2
− ‖u0‖2

L2(Ω)

)
+ A(t) (−I(u0)t− 4J(u0))

≥ A′(t)

(
−I(u0)t2

2
− ‖u0‖2

L2(Ω)

)
+ A(t)

(
−I(u0)t− 2I(u0)− ‖u0‖2

L2(Ω)

)
≥ A′(t)

(
−I(u0)t2

2
− ‖u0‖2

L2(Ω)

)
+ A(t)

(
−I(u0)(t+ 2)− ‖u0‖2

L2(Ω)

)
.

(5.189)

From Definition 5.42, we have that u0 ∈ S1,2
0 (Ω) and let

t > t0 = max

{
‖u0‖2

L2(Ω)

−I(u0)
− 2,

√
2‖u0‖L2(Ω)√
−I(u0)

}
≥ 0. (5.190)

Let us consider the case

t0 = max

{
‖u0‖2

L2(Ω)

−I(u0)
− 2,

√
2‖u0‖L2(Ω)√
−I(u0)

}
=

√
2‖u0‖L2(Ω)√
−I(u0)

. (5.191)
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By combining this fact in (5.189), we obtain

A′′(t)A(t)− (A′(t))2

≥ A′(t)

(
−I(u0)t2

2
− ‖u0‖2

L2(Ω)

)
+ A(t)

(
−I(u0)(t+ 2)− ‖u0‖2

L2(Ω)

)
≥ A′(t)

(
−I(u0)t20

2
− ‖u0‖2

L2(Ω)

)
+ A(t)

(
−I(u0)(t0 + 2)− ‖u0‖2

L2(Ω)

)
≥ A(t)

(
−I(u0)

(
‖u0‖2

L2(Ω)

−I(u0)

)
− ‖u0‖2

L2(Ω)

)
= 0.

(5.192)

Hence, we obtain
A′′(t)A(t)− (A′(t))2 ≥ 0. (5.193)

Similarly, in the other case

t0 = max

{
‖u0‖2

L2(Ω)

−I(u0)
− 2,

‖u0‖L2(Ω)√
−I(u0)

}
=
‖u0‖2

L2(Ω)

−I(u0)
− 2, (5.194)

we have
A′′(t)A(t)− (A′(t))2 ≥ 0. (5.195)

So we have

(lnA(t))′′ =
A′′(t)A(t)− (A′(t))2

A2(t)
,

and integrating over (t0, t), we have

(lnA(t))′ − (lnA(t))′|t=t0 =

∫ t

t0

A′′(τ)A(τ)− (A′(τ))2

A2(τ)
dτ ≥ 0. (5.196)

Thus, we have
(lnA(t))′ ≥ (lnA(t))′|t=t0 . (5.197)

Similarly, we obtain

A′(t0)

A(t0)
(t− t0) = (lnA(t))′|t=t0(t− t0) ≤

∫ t

t0

ln(A(τ))′dτ = ln(A(t))− ln(A(t0)).

(5.198)
Finally, we arrive at

A(t0)e
A′(t0)
A(t)

(t−t0) ≤ A(t). (5.199)

By using above facts (5.197)-(5.199) with t ≥ t0, we compute

‖u‖2
L2(Ω) = A′(t) = (lnA(t))′A(t)

(5.197)

≥ (lnA(t))′|t=t0A(t) =
A(t)

A(t0)
A′(t0)

(5.154)

≥ A′(t0)e
A′(t0)
A(t0)

(t−t0)
= ‖u(·, t0)‖2

L2(Ω)e
A′(t0)
A(t0)

(t−t0) ≥ ‖u0‖2
L2(Ω)e

A′(t0)
A(t0)

(t−t0)
.

(5.200)

That is,
lim
t→+∞

‖u(·, t)‖2
L2(Ω) = +∞. (5.201)

�
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5.8. Blow-up results for the viscoelastic equation on stratified groups. The
following viscoelastic wave equation with weak damping was considered by Messaoudi
in [97].

utt −∆u+

∫ t

0

k(t− τ)∆udτ + a|ut|q−2ut = |u|p−2u, (x, t) ∈ Ω× [0, T ],

u(x, t) = 0, x ∈ ∂Ω,

u(x, 0) = u0(x), ut(x, 0) = u1(x),

(5.202)
where u0 ∈ W 1,2

0 (Ω), u1 ∈ L2(Ω) and k ∈ C1[0, T ] satisfying 1−
∫∞

0
k(τ)dτ = r > 0.

The author proved that any solution with negative initial energy p > q blows up in
finite-time and extended the result by considering positive initial energy in [98]. We
refer [99] and [100] for the further discussions in this topic. Further, let us recall
Lp(Ω)-Poincaré inequality on stratified Lie groups (see [29]).

Theorem 5.48. Assume that Ω ⊂ G and f ∈ C∞0 (Ω \ {x′ = 0}) and R′ = sup
x∈Ω
|x′|.

Then we have

R‖f‖p ≤ ‖∇Gf‖p, 1 < p <∞, (5.203)

where R = |N−p|
R′p

.

5.8.1. Blow-up with strong damping. In this subsection, we consider the following
nonlinear viscoelastic wave equation on stratified Lie groups:

utt −∆Gu+

∫ t

0

k(t− τ)∆Gudτ − a∆Gut = |u|p−2u, (x, t) ∈ Ω× [0, T ],

u(x, t) = 0, x ∈ ∂Ω,

u(x, 0) = u0(x), ut(x, 0) = u1(x),

(5.204)
where Ω ⊂ G is a Haar measurable set with a smooth boundary ∂Ω, N ≥ 3, where N
is defined in (i), u0 ∈ S1,2

0 (Ω), u1 ∈ L2(Ω), a is a positive constant and p > 2 satisfies
the following condition.

2Q

Q− 2
> p > 2, Q ≥ 3. (5.205)

We assume that the function C1(0,∞) 3 k : R+ → R+ has the following properties:

1−
∫ +∞

0

k(s)ds = r >
1

(p− 1)2
(5.206)

and

k(s) ≥ 0, k′(s) ≤ 0. (5.207)

Let us define the following functional

I(t) =
1

2

(
‖ut(t)‖2

2 +

(
1−

∫ t

0

k(s)ds

)
‖∇Gu(t)‖2

2 + k ◦ ∇Gu

)
− 1

p
‖u(t)‖pp, (5.208)

where k ◦ ∇Gu =

∫ t

0

k(t− τ)‖∇Gu(·, t)−∇Gu(·, τ)‖2
2dτ.

Let us give the main tools for obtaining blow-up result.
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Lemma 5.49. Assume that (5.206)-(5.207) hold true. Let u be a weak solution of
(5.204), then we have

(a) I(t) is a non-increasing function, i.e.,

I ′(t) ≤ 0, ∀t ∈ [0, T ]; (5.209)

(b)

I(t) + a

∫ t

0

‖∇Gut(τ)‖2dτ ≤ I(0), t ∈ [0, T ], a > 0. (5.210)

Proof. Let us rewrite the equation in (5.204) as follows

utt −∆Gu+

∫ t

0

k(t− τ)∆Gudτ − a∆Gut − |u|p−2u = 0.

Multiplying both sides by ut and integrating over Ω , we compute

0 =

∫
Ω

uttutdx−
∫

Ω

ut∆Gudx+

∫ t

0

k(t− τ)

∫
Ω

ut∆Gudxdτ − a
∫

Ω

ut∆Gutdx

−
∫

Ω

ut|u|p−2udx

(5.157)
=

∫
Ω

uttutdx−
∫

Ω

∇Gut · ∇Gudx−
∫ t

0

k(t− τ)

∫
Ω

∇Gut · ∇Gudxdτ

+ a

∫
Ω

|∇Gut|2dx−
∫

Ω

ut|u|p−2udx

=
d

dt

(
1

2

∫
Ω

|ut|2dx+
1

2

∫
Ω

|∇Gu|2dx−
1

p

∫
Ω

|u|pdx
)

−
∫ t

0

k(t− τ)

∫
Ω

∇Gut · ∇Gudxdτ + a

∫
Ω

|∇Gut|2dx

=
d

dt

(
1

2
‖ut‖2 +

1

2
‖∇Gu‖2 − 1

p
‖u‖ppdx

)
−
∫ t

0

k(t− τ)

∫
Ω

∇Gut · ∇Gudxdτ

+ a‖∇Gut‖2.
(5.211)
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Let us calculate the following integral.

∫ t

0

k(t− τ)

∫
Ω

∇Gut(t) · ∇Gu(τ)dxdτ

=

∫ t

0

k(t− τ)

∫
Ω

∇Gut(t) · (∇Gu(τ)−∇Gu(t) +∇Gu(t))dxdτ

=

∫ t

0

k(t− τ)

∫
Ω

∇Gut(t) · (∇Gu(τ)−∇Gu(t))dxdτ

+

∫ t

0

k(t− τ)

∫
Ω

∇Gut(t) · ∇Gu(t)dxdτ

= −1

2

∫ t

0

k(t− τ)
d

dt

∫
Ω

|∇Gu(τ)−∇Gu(t)|2dxdτ

+
1

2

∫ t

0

k(t− τ)
d

dt

∫
Ω

|∇Gu(t)|2dxdτ

= −1

2

∫ t

0

k(t− τ)
d

dt

∫
Ω

|∇Gu(τ)−∇Gu(t)|2dxdτ

+
1

2

∫ t

0

k(τ)
d

dt

∫
Ω

|∇Gu(t)|2dxdτ.

(5.212)

By direct calculation shows

−1

2

∫ t

0

k(t− τ)
d

dt

∫
Ω

|∇Gu(τ)−∇Gu(t)|2dxdτ

= −1

2

d

dt

∫ t

0

k(t− τ)‖∇Gu(τ)−∇Gu(t)‖2
2dτ

+
1

2

∫ t

0

k′(t− τ)

∫
Ω

|∇Gu(τ)−∇Gu(t)|2dxdτ

= −1

2

dk ◦ ∇Gu

dt
+
k′ ◦ ∇Gu

2

(5.213)

and

1

2

∫ t

0

k(τ)
d

dt

∫
Ω

|∇Gu(t)|2dxdτ =
1

2

d

dt

(∫ t

0

k(τ)‖∇Gu‖2
2dτ

)
− 1

2
k(t)‖∇Gu‖2. (5.214)
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By changing the last expressions in (5.212), we have∫ t

0

k(t− τ)

∫
Ω

∇Gut(t) · ∇Gu(τ)dxdτ

= −1

2

∫ t

0

k(t− τ)
d

dt

∫
Ω

|∇Gu(τ)−∇Gu(t)|2dxdτ

+
1

2

∫ t

0

k(τ)
d

dt

∫
Ω

|∇Gu(t)|2dxdτ

= −1

2

dk ◦ ∇Gu

dt
+
k′ ◦ ∇Gu

2
+

1

2

d

dt

(∫ t

0

k(τ)‖∇Gu‖2dτ

)
− 1

2
k(t)‖∇Gu‖2.

(5.215)

Next, by using (5.215) in (5.211) yields

0 =
d

dt

(
1

2
‖ut‖2

2 +
1

2
‖∇Gu‖2

2 −
1

p
‖u‖ppdx

)
−
∫ t

0

k(t− τ)

∫
Ω

∇Gut · ∇Gudxdτ

+ a‖∇Gut‖2

=
d

dt

(
1

2
‖ut‖2 +

1

2
‖∇Gu‖2 − 1

p
‖u‖ppdx

)
+

1

2

dk ◦ ∇Gu

dt
− k′ ◦ ∇Gu

2

− 1

2

d

dt

(∫ t

0

k(τ)‖∇Gu‖2dτ

)
+

1

2
k(t)‖∇Gu‖2 + a‖∇Gut‖2

=
d

dt

(
1

2
‖ut‖2 +

1

2
‖∇Gu‖2 − 1

2

∫ t

0

k(τ)‖∇Gu‖2dτ +
1

2
k ◦ ∇Gu−

1

p
‖u‖ppdx

)
+

1

2
k(t)‖∇Gu‖2 + a‖∇Gut‖2 − k′ ◦ ∇Gu

2

=
dI

dt
+

1

2
k(t)‖∇Gu‖2

2 + a‖∇Gut‖2 − k′ ◦ ∇Gu

2
,

(5.216)

that is,

dI

dt
= −1

2
k(t)‖∇Gu‖2 − a‖∇Gut‖2 +

k′ ◦ ∇Gu

2
= −1

2
k(t)‖∇Gu‖2

+
1

2

∫ t

0

k′(t− τ)‖∇Gu(t)−∇Gu(τ)‖2dτ − a‖∇Gut‖2

(5.207)

≤ −a‖∇Gut‖2.

(5.217)

Hence, we get

dI

dt
≤ −a‖∇Gut‖2 ≤ 0, (5.218)

that is,

I ′(t) ≤ 0.
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It means we proved the statement (a). The part (b) follows from integrating (5.218)
over (0, t)

I(t)− I(0) ≤ −a
∫ t

0

‖∇Gut‖2dτ, (5.219)

which is equivalent to

I(t) + a

∫ t

0

‖∇Gut‖2dτ ≤ I(0).

�

Now, we present the main result of this subsection.

Theorem 5.50. Assume that p > 2 satisfies (5.205), a > 0 and k ∈ C1[0, T ] satisfies
the conditions (5.206) and (5.207). Let u be a solution of (5.204), satisfying(

2(u, ut) + a‖∇Gu‖2
2

)
|t=0 >

2p

θ
I(0), (5.220)

where θ = max
µ1∈(0,1)

θ(µ1) = θ(µ∗1) with

θ(µ1) = min

(
((p+ 2)aαµ1R)

1
2 ,
α(1− µ1)

a

)
. (5.221)

Then, u blows up at a finite time.

Proof. Let us denote the following function:

Z(t) = 2(ut, u) + a‖∇Gu(t)‖2 − µI(0), (5.222)

where µ is a positive constant to be specified. By multiplying u(t) the equation
(5.204) and integrating over Ω, we have

(utt, u) + a(∇Gu,∇Gut) = −‖∇Gu‖2 −
∫ t

0

∫
Ω

k(t− τ)∆Gu(τ)dτu(t)dx+ ‖u‖pp.

(5.223)

Then by using this fact, we get

Z ′(t) = 2‖ut‖2 + 2(utt, u) + 2a(∇Gu,∇Gut)

= 2‖ut‖2 − 2‖∇Gu‖2 − 2

∫
Ω

k(t− τ)∆Gu(τ)dτu(t)dx+ 2‖u‖pp.
(5.224)

By using the first Green’s identity, we compute∫ t

0

∫
Ω

k(t− τ)u(t)∆Gudτdx = −
∫ t

0

∫
Ω

k(t− τ)(∇Gu(t) · ∇Gu(τ))dxdτ

= −
∫ t

0

∫
Ω

k(t− τ)∇Gu(t) · (∇G(u(τ)− u(t)))dxdτ −
∫ t

0

k(t− τ)‖∇Gu(t)‖2dτ

= −
∫ t

0

∫
Ω

k(t− τ)∇Gu(t) · (∇G(u(τ)− u(t)))dxdτ − ‖∇Gu(t)‖2

∫ t

0

k(τ)dτ

= −
∫ t

0

k(t− τ)(∇Gu(t),∇G(u(τ)− u(t)))dτ − ‖∇Gu(t)‖2

∫ t

0

k(τ)dτ.

(5.225)
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This yields

Z ′(t) = 2‖ut‖2 + 2(utt, u) + 2a(∇Gu,∇Gut)

= 2‖ut‖2 − 2‖∇Gu‖2 − 2

∫
Ω

k(t− τ)∆Gu(τ)dτu(t)dx+ 2‖u‖pp

= 2‖ut‖2 − 2‖∇Gu‖2 + 2

∫ t

0

k(t− τ)(∇Gu(t),∇G(u(τ)− u(t)))dτ

+ 2‖∇Gu(t)‖2

∫ t

0

k(τ)dτ + 2‖u‖pp.

(5.226)

On the other hand, by using Young’s inequality, we have∫ t

0

k(t− τ)(∇Gu(t),∇G(u(t)− u(τ)))dτ ≤ p

2

∫ t

0

k(t− τ)‖∇Gu(τ)−∇Gu(t)‖2dτ

+
1

2p
‖∇Gu(t)‖2

∫ t

0

k(τ)dτ,

(5.227)

that is,∫ t

0

k(t− τ)(∇Gu(t),∇G(u(τ)− u(t)))dτ ≥

− p

2

∫ t

0

k(t− τ)‖∇Gu(τ)−∇Gu(t)‖2dτ − 1

2p
‖∇Gu(t)‖2

∫ t

0

k(τ)dτ.

(5.228)

Hence, in the view of (5.228), we have

Z ′(t) = 2‖ut‖2 − 2‖∇Gu‖2 + 2

∫ t

0

k(t− τ)(∇Gu(t),∇G(u(τ)− u(t)))dτ

+ 2‖∇Gu(t)‖2

∫ t

0

k(τ)dτ + ‖u‖pp

≥ 2‖ut‖2 − 2‖∇Gu‖2 − p
∫ t

0

k(t− τ)‖∇Gu(τ)−∇Gu(t)‖2dτ

(5.229)

−1

p
‖∇Gu‖2

∫ t

0

k(τ)dτ + 2‖∇Gu‖2

∫ t

0

k(τ)dτ + 2‖u‖pp

= (p+ 2)‖ut‖2 + (p− 2)

(
1−

∫ t

0

k(τ)dτ

)
‖∇Gu(t)‖2

− p‖ut‖2 − p
(

1−
∫ t

0

k(τ)dτ

)
‖∇Gu(t)‖2 + 2‖u‖pp

+ 2

(
−p

2

∫ t

0

k(t− τ)‖∇Gu(τ)−∇Gu(t)‖2dτ − 1

2p
‖∇Gu‖2

∫ t

0

k(τ)dτ

)
≥ (p+ 2)‖ut‖2 + (p− 2)

(
1−

∫ t

0

k(τ)dτ

)
‖∇Gu(t)‖2

− 1

p
‖∇Gu‖2

∫ t

0

k(τ)dτ − 2pI(t).
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By using the part (b) of Lemma 5.49 it follows that

Z ′(t) ≥ (p+ 2)‖ut‖2 + (p− 2)

(
1−

∫ t

0

k(τ)dτ

)
‖∇Gu(t)‖2

− 1

p
‖∇Gu‖2

∫ t

0

k(τ)dτ − 2pI(t)

(5.210)

≥ (p+ 2)‖ut‖2 + (p− 2)

(
1−

∫ t

0

k(τ)dτ

)
‖∇Gu(t)‖2

− 1

p
‖∇Gu‖2

∫ t

0

k(τ)dτ + 2ap

∫ t

0

‖∇Guτ (τ)‖2dτ − 2pI(0)

(5.206)

≥ (p+ 2)‖ut‖2 +

(
(p− 2)r − 1

p
(1− r)

)
‖∇Gu‖2

− 2pI(0) + 2ap

∫ t

0

‖∇Gut(τ)‖2dτ

= (p+ 2)‖ut‖2 + α‖∇Gu‖2 − 2pI(0) + 2ap

∫ t

0

‖∇Gut‖2dτ

a>0

≥ (p+ 2)‖ut‖2 + α‖∇Gu‖2 − 2pI(0),

(5.230)

where α =
(

(p− 2)r − 1
p
(1− r)

)
. Note that α > 0 since the condition (5.206).

Further, by using Young’s inequality, we get

2 ((p+ 2)aαµ1R)
1
2 |(ut, u)| ≤ (p+ 2)‖ut‖2 + aαµ1R‖u‖2. (5.231)

Combining Theorem 5.48 with this fact, we get

Z ′(t) ≥ (p+ 2)‖ut‖2 + α‖∇Gu‖2 − 2pI(0) + 2ap

∫ t

0

‖∇Gut‖2dτ

= (p+ 2)‖ut‖2 + αaµ1‖∇Gu‖2 + (1− aµ1)α‖∇Gu‖2 − 2pI(0)

+ 2ap

∫ t

0

‖∇Gut‖2dτ

(5.203)

≥ (p+ 2)‖ut‖2 + αRaµ1‖u‖2 + (1− aµ1)α‖∇Gu‖2 − 2pI(0)

+ 2ap

∫ t

0

‖∇Gut‖2dτ

(5.231)

≥ 2 ((p+ 2)αµ1R)
1
2 |(ut, u)|+ (1− aµ1)α‖∇Gu‖2 − 2pI(0)

+ 2ap

∫ t

0

‖∇Gut‖2dτ

a>0

≥ 2 ((p+ 2)aαµ1R)
1
2 |(ut, u)|+ (1− aµ1)α‖∇Gu‖2 − 2pI(0)

≥ θ(µ1)

(
2(ut, u) + a‖∇Gu‖2 − 2p

θ(µ1)
I(0)

)
,

(5.232)
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where R is defined in Theorem 5.48, µ1 ∈ (0, 1) is to be specified later and

θ(µ1) = min

(
((p+ 2)aαµ1R)

1
2 ,
α(1− µ1)

a

)
. (5.233)

Then we need to show that K1(µ1) = ((p+ 2)aαµ1R)
1
2 is strictly increasing function

for µ1 ∈ [0, 1] with K1(0) = 0 and K1(1) = ((p+ 2)aαR)
1
2 . Similarly, K2(µ2) =

α(1−µ1)
a

is strictly decreasing function for µ1 ∈ [0, 1] with K2(0) = α
a

and K2(1) = 0.
Thus, θ(µ1) attains its maximum at the point µ1 = µ∗1, where µ∗1 is the root of the

((p+ 2)aαµ1R)
1
2 = α(1−µ1)

a
. Setting

θ = sup
µ1∈(0,1)

θ(µ1) = θ(µ∗1) and µ =
2p

θ

in (5.222) implies that Z(0) ≥ 0. Hence, we get

Z ′(t) ≥ θZ(t),

which implies

Z(t) ≥ Z(0) exp(θt),

that is,

Z(t)→ +∞ as t→ +∞.

By introducing a new function

ξ(t) = ‖u‖2 + a

∫ t

0

‖∇Gu(τ)‖2dτ + a(T − t)‖∇Gu0‖2, t ∈ [0, T ], (5.234)

we compute

ξ′(t) = 2(ut, u) + a‖∇Gu‖2 − a‖∇Gu0‖2 = 2(ut, u) + a

∫ t

0

d

dτ
‖∇Gu‖2dτ

= 2(ut, u) + 2a

∫ t

0

(∇Guτ (τ),∇Gu(τ))dτ.

(5.235)

It easy to see that ξ′′(t) = Z ′(t), so we have

ξ′′(t) ≥ (p+ 2)‖ut‖2 + α‖∇Gu‖2 − 2pI(0) + 2ap

∫ t

0

‖∇Gut‖2dτ

≥ (p+ 2)‖ut‖2 + α‖∇Gu‖2 − 2pI(0).

(5.236)

Let 0 < γ < 1, ε > 0, TB > 0 be such that γ(p+ 2) > 4 + ε = ν, and

(p+ 2)‖ut‖2 + α‖∇Gu‖2 − 2pI(0) ≥ γ((p+ 2)‖ut‖2 + α‖∇Gu‖2) t > TB. (5.237)
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Thus, by using these facts, we have

ξ′′(t) ≥ (p+ 2)‖ut‖2 + α‖∇Gu‖2 − 2pI(0) + 2ap

∫ t

0

‖∇Gut‖2dτ

≥ (p+ 2)‖ut‖2 + α‖∇Gu‖2 − 2pI(0) + 2ap

∫ t

0

‖∇Gut‖2dτ

≥ γ((p+ 2)‖ut‖2 + α‖∇Gu‖2) + aγ(p+ 2)

∫ t

0

‖∇Gut‖2dτ

≥ (4 + ε)(‖ut‖2 + a

∫ t

0

‖∇Gut‖2dτ)

= ν(‖ut‖2 + a

∫ t

0

‖∇Gut‖2dτ), t > TB.

(5.238)

Next, from Cauchy-Schwarz-Bunyakovsky inequality yields the following estimates:

|(ut, u)| ≤ ‖ut‖2‖u‖2, (5.239)

(∫ t

0

(∇Gut,∇Gu)dτ

)2

≤
∫ t

0

‖∇Gut‖2dτ

∫ t

0

‖∇Gu‖2dτ. (5.240)

Hence, we get

2(ut,u)

∫ t

0

(∇Gut,∇Gu)dτ

(5.239),(5.240)

≤ 2‖ut‖‖u‖
(∫ t

0

‖∇Gut‖2dτ

) 1
2
(∫ t

0

‖∇Gu‖2dτ

) 1
2

≤ ‖u‖2

(∫ t

0

‖∇Gut‖2dτ

)
+ ‖ut‖2

(∫ t

0

‖∇Gu‖2dτ

)
.

(5.241)

Hence, for t > TB we get

ξ′′(t)ξ(t)− ν

4
(ξ′(t))2 > ν

(
‖ut‖2 + a

∫ t

0

‖∇Gut‖2dτ

)(
‖u‖2 + a

∫ t

0

‖∇Gu(τ)‖2dτ

)
− ν

(
2(ut, u) + 2a

∫ t

0

(∇Gut(τ),∇Gu(τ))dτ

)2

= ν
(
‖ut‖2‖u‖2 + a‖ut‖2

∫ t

0

‖∇Gu(τ)‖2dτ + a‖u‖2

∫ t

0

‖∇Gut‖2dτ

+ a2

∫ t

0

‖∇Gut‖2dτ

∫ t

0

‖∇Gu(τ)‖2dτ
)
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−ν
(

(ut, u)2 + 2a(ut, u)

∫ t

0

(∇Gut(τ),∇Gu(τ))dτ

+ a2

(∫ t

0

(∇Gut(τ),∇Gu(τ))dτ

)2 )
(5.239)

≥ ν
(
a‖ut‖2

∫ t

0

‖∇Gu(τ)‖2dτ + a‖u‖2

∫ t

0

‖∇Gut‖2dτ

+ a2

∫ t

0

‖∇Gut‖2dτ

∫ t

0

‖∇Gu(τ)‖2dτ
)

− γ
(

2a(ut, u)

∫ t

0

(∇Gut(τ),∇Gu(τ))dτ

+ a2

(∫ t

0

(∇Gut(τ),∇Gu(τ))dτ

)2 )
(5.240)

≥ aν

(
‖ut‖2

∫ t

0

‖∇Gu(τ)‖2dτ + ‖u‖2

∫ t

0

‖∇Gut‖2dτ

)
− 2νa(ut, u)

∫ t

0

(∇Gut(τ),∇Gu(τ))dτ

(5.241)

≥ 0.

(5.242)

By setting φ(s) = ξ(t− TB), where s = t− TB, it is easy to see that

φ′′φ− γ

4
(φ′)2 ≥ 0.

Thus, there exists TB < t < T such that

lim
t→TB

φ(s) = +∞, (5.243)

i.e.,

lim
t→TB

(
‖u‖2 + a

∫ t

0

‖∇Gu(τ)‖2dτ + (T − t)‖∇Gu0‖2

)
= +∞. (5.244)

Hence, in the view of the last expression we have

‖∇Gu‖2 → +∞, t→ TB.

�

5.8.2. Blow-up with weak damping. In this subsection, we consider the viscoelastic
wave equation with weak damping for the sub-Laplacian:

utt −∆Gu+

∫ t

0

k(t− τ)∆Gudτ + a|ut|q−2ut = |u|p−2u, (x, t) ∈ Ω× [0, T ],

u(x, t) = 0, x ∈ ∂Ω,

u(x, 0) = u0(x), ut(x, 0) = u1(x),

(5.245)
where Ω ⊂ G, is a Haar measurable set with a smooth boundary ∂Ω, a > 0, p > 2
q ≥ 1, u0 ∈ S1,2

0 (Ω), and u1 ∈ L2(Ω). The function I(t) is defined as in (5.208) and
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the function k satisfies (5.206)-(5.207). Further, let p and q be such that

max{p, q} ≤ 2(Q− 1)

Q− 2
. (5.246)

We state the following lemmas which will be useful in proving blow-up result for
(5.245).

Lemma 5.51. Assume that p, q satisfy (5.246). Then, we have

‖u‖γp ≤ C
(
‖u‖pp + ‖∇Gu‖2

)
, 2 ≤ γ ≤ p, (5.247)

where C is a positive constant which depends only on the Haar measure of Ω.

Proof. Suppose that ‖u‖p > 1. Since 2 ≤ γ ≤ p, Sobolev Embedding Theorem 3.45

with 2∗ = 2Q
Q−2

yields

‖u‖γp ≤ ‖u‖pp ≤ ‖u‖pp + ‖u‖2
2∗ ≤ ‖u‖pp + C‖∇Gu‖2

2 ≤ C
(
‖u‖pp + ‖∇Gu‖2

)
. (5.248)

Now suppose ‖u‖p ≤ 1. Let p = Qp′

Q−p′ with 1 < p′ < Q. Then we have the 1 < p′ < p

yielding continuous embedding, i.e., Lp(Ω) ↪→ Lp
′
(Ω). Hence, we have

‖∇Gu‖p′ ≤ C‖∇Gu‖p. (5.249)

Since 2 ≤ γ, we get

‖u‖γp ≤ ‖u‖2
p ≤ C‖∇Gu‖2

p′

(5.249)

≤ C‖∇Gu‖2
p ≤ C‖∇Gu‖2

p + ‖u‖pp
≤ C

(
‖u‖pp + ‖∇Gu‖2

)
.

(5.250)

�

Lemma 5.52. Assume that u be a weak solution of (5.245) with (5.246). Then we
get

‖u‖γp ≤ C
(
I(t)− ‖ut‖2 − (k ◦ ∇Gu) + ‖u‖pp

)
, ∀t ∈ [0, T ], (5.251)

where 2 ≤ γ ≤ p and C is a positive constant.

Proof. The function I(t) is given by

I(t) =
1

2

(
‖ut(t)‖2

2 +

(
1−

∫ t

0

k(s)ds

)
‖∇Gu(t)‖2

2 + k ◦ ∇Gu

)
− 1

p
‖u(t)‖pp. (5.252)

Therefore, by combining (5.206) and (5.207), we compute

r‖∇Gu(t)‖2
2

(5.206)
=

(
1−

∫ ∞
0

k(s)ds

)
‖∇Gu(t)‖2

2

(5.207)

≤
(

1−
∫ t

0

k(s)ds

)
‖∇Gu(t)‖2

2

= 2I(t)− ‖ut(t)‖2
2 − k ◦ ∇Gu+

2

p
‖u‖pp.

(5.253)

Now we apply Lemma 5.51 with 2 ≤ γ ≤ p, to obtain

‖u‖γp ≤ C
(
‖u‖pp + ‖∇Gu‖2

) (5.253)

≤ C
(
I(t)− ‖ut‖2 − (k ◦ ∇Gu) + ‖u‖pp

)
. (5.254)

�
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Lemma 5.53. Assume that (5.206)-(5.207) are satisfied. Suppose u be a weak solu-
tion of (5.245), then I(t) is a non-increasing function for t ∈ [0, T ], i.e.,

I ′(t) ≤ 0, ∀t ∈ [0, T ]. (5.255)

We omit the proof of Lemma 5.53 since it is similar to that of Lemma 5.49. The
main result of this section is the following theorem.

Theorem 5.54. Suppose that q > 1 and p > max{2, q} satisfy the condition (5.246).
If (5.206) and (5.207) hold with I(0) < 0, then solution u of (5.245) blows up at a
finite time.

Proof. From Lemma 5.53, we have

I ′(t) ≤ 0, (5.256)

therefore,

I(t) ≤ I(0), ∀t ∈ [0, T ].

Let us denote by Z(t) = −I(t). Then, we have

0 < Z(0) ≤ Z(t) = −I(t)

= −1

2

(
‖ut(t)‖2

2 +

(
1−

∫ t

0

k(s)ds

)
‖∇Gu(t)‖2

2 + k ◦ ∇Gu

)
+

1

p
‖u(t)‖pp

= −1

2
‖ut(t)‖2

2 −
1

2

(
1−

∫ t

0

k(s)ds

)
‖∇Gu(t)‖2

2 −
1

2
k ◦ ∇Gu+

1

p
‖u(t)‖pp

(5.206),(5.207)

≤ 1

p
‖u(t)‖pp.

(5.257)

Similarly by Lemma 5.49, we get

Z ′(t) = −I ′(t) = a‖ut‖qq −
1

2
(k′ · ∇Gu) +

1

2
k(t)‖∇Gu‖2

(5.206),(5.207)

≥ 0. (5.258)

Let us also define the following function

A(t) = Z1−β(t)− ε(ut, u), (5.259)
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where 0 < β ≤ min{p−2
2p
, p−q
p(q−1)

}. By means of direct calculations and the Cauchy-

Bunyakovsy-Schwarz inequality, we have

A′(t) = (1− β)Z−β(t)Z ′(t)− ε(utt, u)− ε‖ut‖2

= (1− β)Z−β(t)Z ′(t)− ε‖∇Gu‖2 + ε

∫ t

0

k(t− τ)(∇Gu(τ),∇Gu(t))dτ

+ ε‖u‖pp − aε
∫

Ω

|ut|q−2utudx+ ε‖ut‖2

(5.225),(5.258)

≥ a(1− β)Z−β(t)‖ut‖qq − ε‖∇Gu‖2 + ε‖u‖pp − aε
∫

Ω

|ut|q−2utudx

+ ε

∫ t

0

∫
Ω

k(t− τ)(∇Gu(t),∇G(u(τ)− u(t)))dxdτ

+ ε‖∇Gu(t)‖2

∫ t

0

k(τ)dτ + ε‖ut‖2

C−B−S
≥ a(1− β)Z−β(t)‖ut‖qq − ε‖∇Gu‖2 + ε‖u‖pp − aε

∫
Ω

|ut|q−2utudx+ ε‖ut‖2

− ε
∫ t

0

k(t− τ)‖∇Gu‖2‖∇G(u(τ)− u(t))‖2dτ + ε‖∇Gu(t)‖2

∫ t

0

k(τ)dτ.

(5.260)

In the view of (5.208), we get

1

p
‖u‖pp = Z(t) +

1

2

(
‖ut(t)‖2 +

(
1−

∫ t

0

k(s)ds

)
‖∇Gu(t)‖2 + k ◦ ∇Gu

)
. (5.261)

On the other hand, by combining (5.260) with (5.228), we have

A′(t) ≥ a(1− β)Z−β(t)‖ut‖qq − ε‖∇Gu‖2 + ε‖u‖pp − aε
∫

Ω

|ut|q−2utudx+ ε‖ut‖2

− ε
∫ t

0

k(t− τ)‖∇Gu‖2‖∇G(u(τ)− u(t))‖2dτ + ε‖∇Gu(t)‖2

∫ t

0

k(τ)dτ

(5.261)
= a(1− β)Z−β(t)‖ut‖qq − ε‖∇Gu‖2 − aε

∫
Ω

|ut|q−2utudx+ ε‖ut‖2

+
εp

2

(
2Z(t) + ‖ut‖2 +

(
1−

∫ t

0

k(s)ds

)
‖∇Gu‖2 + k ◦ ∇Gu

)
− ε

∫ t

0

k(t− τ)‖∇Gu‖2‖∇G(u(τ)− u(t))‖2dτ + ε‖∇Gu(t)‖2

∫ t

0

k(τ)dτ

(5.228)

≥ a(1− β)Z−β(t)‖ut‖qq +
(
ε+

εp

2

)
‖ut‖2 + εpZ(t)− aε

∫
Ω

|ut|q−2utudx

+
(εp

2
− εδ

)
(k ◦ ∇Gu) +

((p
2
− 1
)
− ε

(
p

2
− 1 +

1

4δ

)∫ t

0

k(τ)dτ

)
‖∇Gu‖2,

(5.262)
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where δ ∈ (0, p
2
). By applying Young’s inequality to estimate the fourth term on the

right hand side of the (5.262) to obtain

A′(t) ≥ (1− β)Z−β(t)‖ut‖qq +
(
ε+

εp

2

)
‖ut‖2 + εpZ(t)− aε

∫
Ω

|ut|q−2utudx

+
(εp

2
− εδ

)
(k ◦ ∇Gu) +

((p
2
− 1
)
−
(
p

2
− 1 +

1

4δ

)∫ t

0

k(τ)dτ

)
‖∇Gu‖2

= (1− β)Z−β(t)‖ut‖qq +
(
ε+

εp

2

)
‖ut‖2 + εpZ(t)− aε

∫
Ω

|ut|q−2utudx

+ εC1(k ◦ ∇Gu) + εC2‖∇Gu‖2 + εpZ(t)

≥ a

(
(1− β)Z−β − ελ−q

′

q′

)
‖ut‖qq +

(
ε+

εp

2

)
‖ut‖2 + εC1(k ◦ ∇Gu)

+ εC2‖∇Gu‖2 − εaλq

q
‖u‖qq + εpZ(t), ∀λ > 0,

(5.263)

where

C1 =
εp

2
− εδ > 0, C2 =

(p
2
− 1
)
−
(
p

2
− 1 +

1

4δ

)∫ t

0

k(τ)dτ > 0.

Then, by setting λ−q
′
= χZ−β(t) we get

A′(t) ≥ a

(
(1− β)Z−β − ελ−q

′

q′

)
‖ut‖qq +

(
ε+

εp

2

)
‖ut‖2

+ εC1(k ◦ ∇Gu) + εpZ(t) + εC2‖∇Gu‖2 − εaλq

q
‖u‖qq

= a

(
(1− β)− εχ

q′

)
Z−β‖ut‖qq +

(
ε+

εp

2

)
‖ut‖2 + εC1(k ◦ ∇Gu)

+ εC2‖∇Gu‖2 + ε

(
pZ(t)− εaχ1−q

q
Z−β(1−q)‖u‖qq

)
.

(5.264)

Next, from (5.257) and the fact that Lp(Ω) ↪→ Lq(Ω) for p > q, we have

‖u‖qq ≤ C

(
1

p

)β(q−1)

‖u‖q+βp(q−1)
p . (5.265)

The last inequality applied to (5.264) yields

A′(t) ≥ a

(
(1− β)− εχ

q′

)
Z−β‖ut‖qq +

(
ε+

εp

2

)
‖ut‖2 + εC1(k ◦ ∇Gu)

+ εC2‖∇Gu‖2 + ε

(
pZ(t)− aχ1−q

q
‖u‖qq

)
≥ a

(
(1− β)− εχ

q′

)
Z−β‖ut‖qq +

(
ε+

εp

2

)
‖ut‖2 + εC1(k ◦ ∇Gu)

+ εC2‖∇Gu‖2 + ε

(
pZ(t)− Caχ

1−q

q

(
1

p

)β(q−1)

‖u‖q+βp(q−1)
p

)
.

(5.266)
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Now, by applying Lemma 5.52 with γ = q + βp(q − 1) ≤ p.

A′(t) ≥ a

(
(1− β)− εχ

q′

)
Z−β‖ut‖qq +

(
ε+

εp

2

)
‖ut‖2 + εC1(k ◦ ∇Gu)

+ εC2‖∇Gu‖2 + ε

(
pZ(t)− Caχ

1−q

q

(
1

p

)β(q−1)

‖u‖γp

)
(5.251)

≥ a

(
(1− β)− εχ

q′

)
Z−β‖ut‖qq +

(
ε+

εp

2

)
‖ut‖2 + εC1(k ◦ ∇Gu)

+ εC2‖∇Gu‖2 + ε
(
pZ(t) + C ′1χ

1−q (Z(t) + ‖ut‖2 + (k ◦ ∇Gu)− ‖u‖pp
))

≥ a

(
(1− β)− εχ

q′

)
Z−β‖ut‖qq + ε

(p
2

+ 1 + C1χ
1−q
)
‖ut‖2 − εC ′1χ1−q‖u‖pp

+ ε
(
C1 + C ′1χ

1−q) (k ◦ ∇Gu) + εC2‖∇Gu‖2 + ε
(
p+ C ′1χ

1−q)Z(t),
(5.267)

where C ′1 =
aC( 1

p)
β(q−1)

q
. From assumption I(t) < 0, that is,

Z(t) ≥ −1

2

(
‖ut(t)‖2

2 +

(
1−

∫ t

0

k(s)ds

)
‖∇Gu(t)‖2

2 + k ◦ ∇Gu

)
+

1

p
‖u(t)‖pp.

(5.268)
By setting p = 2b+ (p− 2b) where b = min{C1, C2} and letting χ to be large enough
in (5.267) we have

A′(t) ≥ a

(
(1− β)− εχ

q′

)
Z−β‖ut‖qq + εσ

(
Z(t) + ‖ut‖2 + ‖u‖pp + k ◦ ∇Gu

)
,

(5.269)

where σ > 0. Next, we choose sufficiently small ε so that (1− β)− εχ
q′
> 0. Thus, we

have

A′(t) > εσ
(
Z(t) + ‖ut‖2 + ‖u‖pp + k ◦ ∇Gu

)
, (5.270)

and

A(0) = Z1−β(0) + ε(u0, u1) > 0.

Hence,

0 < A(0) ≤ A(t), ∀t ∈ [0, T ].

Now, by using the Cauchy-Bunyakovsky-Schwarz inequality, embedding of spaces and
Young’s inequalities, we have

|(ut, u)|
1

1−β ≤ ‖ut‖
1

1−β ‖u‖
1

1−β ≤ C‖ut‖
1

1−β ‖u‖
1

1−β
p ≤ C

(
‖u‖γp + ‖ut‖2

)
, (5.271)

with 1
(1−β)γ

+ 1
2(1−β)

= 1. By Lemma 5.52, we obtain

|(ut, u)|
1

1−β ≤ C
(
Z(t) + ‖u‖pp + ‖ut‖2 + k ◦ ∇Gu

)
. (5.272)



149

From this fact, we calculate

A(t) =
(
Z1−β(t) + ε(ut, u)

) 1
1−β ≤ 2

1
1−β

(
Z(t) + |(ut, u)|

1
1−β

)
≤ 2

1
1−β
(
Z(t) + C

(
Z(t) + ‖u‖pp + ‖ut‖2 + k ◦ ∇Gu

))
≤ C

(
Z(t) + ‖u‖pp + ‖ut‖2 + k ◦ ∇Gu

)
≤ CA′(t), ∀t ∈ [0, T ].

(5.273)

Hence,

A
β

1−β (t) ≥ C(1− β)

C(1− β)A−
β

1−β (0)− tβ
, (5.274)

therefore, we arrive at

TB ≤
C(1− β)

β(A(0))
β

1−β
. (5.275)

Therefore, A(t) blows up in finite time. That is,

lim
t→TB

‖∇Gu‖ = +∞. (5.276)

�

5.9. Kato type exponents for the wave Rockland equations. In one of the
most popular works of Kato he considered the following problem:

∂2u(x, t)

∂t2
−∆u(x, t) = |u(x, t)|p, (x, t) := RN × (0,+∞), (5.277)

for N > 1 and p > 1, with the Cauchy data

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ RN .

For the wave problem (5.277), Kato’s result states that if u is a generalised solution
of the problem (5.277) with u0, u1 ∈ C∞0 (RN), suppu ⊂ {|x| ≤ R + t} and∫

RN

|x|η−1u0(x)dx > 0,

∫
RN

u1(x)dx > 0,

where

η(N) =

{
0 if N is odd,
1
2

if N is even,

then the solution u cannot be globally (in time) defined if

1 < p ≤ N + 1

N − 1
. (5.278)

The exponent p∗ = N+1
N−1

is usually called the Kato critical exponent for the problem
(5.277).

The wave equation on the Heisenberg group Hn studied in [101], where the authors
concerned the following problem

∂2u(x, t)

∂t2
−∆Hnu(x, t) = |u(x, t)|p, (x, t) := Hn × (0,+∞),
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with the Cauchy data

u(x, 0) = u0(x), ut(x, 0) = u1(x),

where p > 1. Also, in the paper [102] it is considered a space–fractional analogue of
the non-linear wave equation on the Heisenberg group

∂2u(x, t)

∂t2
+ (−∆Hn)s|u(x, t)|m = |u(x, t)|p, (x, t) := Hn × (0,+∞),

with the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x),

where (−∆Hn)s is the fractional sub-Laplacian on Hn, s ∈ (0, 2), m 6= 1, p > 1.
In this dissertation we are not only interested in studying of the wave equations,

also, the pseudo-hyperbolic equations and systems on graded Lie groups are in the
field of our interest. In particular, we extend nonexistence results obtained by Véron
and Pohozaev [101] for the hyperbolic equation and by Kirane and Ragoub [103] for
the pseudo-hyperbolic equation and system on the Heisenberg group to the case of
the graded Lie groups.

5.9.1. Wave equation case. Assume that m > 0 and let consider the Cauchy problem
for the nonlinear Rockland wave equation

utt(x, t) +R|u(x, t)|m = |u(x, t)|p, (x, t) ∈ G× (0,+∞) := Ω,

u(x, 0) = u0(x) ≥ 0, x ∈ G,
ut(x, 0) = u1(x), x ∈ G.

(5.279)

where R is the Rockland operator in the following form:

R =
n∑
j=1

(−1)
ν0
νj cjX

2
ν0
νj

j ,

where νj ∈ N, cj ∈ R, j = 1, . . . , n, and ν0 is any common multiple of ν1, . . . , νn,
([3, Lemma 4.1.8]). By cj ∈ R, j = 1, . . . , n, we can choose R such that it will be
positive. Also, we introduce this operator in the Section 2.2.

Let us give definition of the weak solution of the Rockland wave equation (5.279).

Definition 5.55. Assume that u1, u0 ∈ L1
loc(G). We say that the function u ∈

L
max{m,p}
loc (ΩT ) (ΩT = G× (0, T )) is a local weak solution of (5.279) if the identity∫

ΩT

u(x, t)
∂2ϕ(x, t)

∂t2
dxdt+

∫
ΩT

|u(x, t)|mRϕ(x, t)dxdt

= −
∫
G
u0(x)

∂ϕ(x, 0)

∂t
dx+

∫
G
u1(x)ϕ(x, 0)dx+

∫
ΩT

|u(x, t)|pϕ(x, t)dxdt, (5.280)

holds for all test functions

ϕ ∈ C2((0, T ];L2(G)) ∩ C([0, T ];Hγ(G)),

such that γ = 2 max
j=1,...,n

ν0
νj
, ϕ(x, T ) = 0 and ϕ ≥ 0. If T = +∞ then u is called a

global weak solution.
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Here, the space Hγ(G) is the homogeneous Sobolev space related to the Rockland
operator R, for more details, see [3, 104] and Section 2.2.

Theorem 5.56. Assume that G be a graded Lie group with homogeneous dimension
Q ≥ 2 and µ = max

j=1,...,n

νj
ν0

be such that µQ > 1. Assume that p > 1, and
∫
G u1(x)dx ≥

0. Then if

1 ≤ m < p < pc =
µQm+ 1

µQ− 1
, (5.281)

the Cauchy problem (5.279) admits no non-negative global weak solution other than
trivial.

Proof. We prove this theorem by contradiction. Suppose that there exists a weak
solution u for some T > 0. By using (5.279) and Definition 5.55, we get

−
∫
G
u0(x)

∂ϕ(x, 0)

∂t
dx+

∫
G
u1(x)ϕ(x, 0)dx+

∫
ΩT

|u(x, t)|pϕ(x, t)dxdt

=

∫
ΩT

∂2ϕ(x, t)

∂t2
u(x, t)dxdt+

∫
ΩT

|u(x, t)|mRϕ(x, t)dxdt. (5.282)

By choosing ϕ(x, t) such that
∂ϕ

∂t
(x, 0) = 0.

By using ε-Young’s inequality

ab ≤ εap + C(ε)bp
′
,

1

p
+

1

p′
= 1, a, b ≥ 0,

we obtain∫
G
u1(x)ϕ(x, 0)dx+

∫
ΩT

|u(x, t)|pϕ(x, t)dxdt

=

∫
ΩT

∂2ϕ(x, t)

∂t2
u(x, t)dxdt+

∫
ΩT

|u(x, t)|mRϕ(x, t)dxdt

≤ 1

4

∫
ΩT

|u|pϕdxdt+ C

∫
ΩT

ϕ−
1
p−1

∣∣∣∣∂2ϕ

∂t2

∣∣∣∣ p
p−1

dxdt

+
1

4

∫
ΩT

|u|pϕdxdt+ C

∫
ΩT

|Rϕ|
p

p−mϕ−
m
p−mdxdt. (5.283)

Then, we have∫
ΩT

|u|pϕdxdt ≤
∫
G
u1(x)ϕ(x, 0)dx+

∫
ΩT

|u|pϕdxdt

≤ C

∫
ΩT

ϕ−
1
p−1

∣∣∣∣∂2ϕ

∂t2

∣∣∣∣ p
p−1

dxdt+ C

∫
ΩT

|Rϕ|
p

p−mϕ−
m
p−mdxdt. (5.284)

Assume that Φ : R+ → [0, 1] be a smooth nonincreasing function such that

Φ(z) :=

{
1, if 0 ≤ z ≤ 1,

0, if z ≥ 2.
(5.285)
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For R > 0, we define

ϕ(x, t) = Φ

(
|x|2

Rµ

)
Φ

(
t2

R2 p−1
p−m

)
,

where Φ ∈ C∞[0,+∞). By Denoting the following vector fields acting to the variable
Xj = xXj. By denoting Ω1 := {x ∈ G : 0 ≤ |x̃| ≤ 2} and Ω2 := {t : 0 ≤ t̃ ≤ 2}. By

substituting x = Rµx̃ and t = R
p−1
p−m t̃ and from Proposition 2.4, we get∫

ΩT

|Rϕ(x, t)|
p

p−mϕ−
m
p−mdxdt

=

∫
ΩT

n∑
j=1

∣∣∣∣(−1)
ν0
νj

xX
2
ν0
νj

j ϕ(x, t)

∣∣∣∣ p
p−m

ϕ−
m
p−mdxdt

=

∫
ΩT

n∑
j=1

R
−2

ν0p
νj(p−m)

µ
∣∣∣∣(−1)

ν0
νj

x̃X
2
ν0
νj

j ϕ(x, t)

∣∣∣∣ p
p−m

ϕ−
m
p−mdxdt

µ= max
j=1,...,n

νj
ν0

≤ R−
2p
p−m

∫
ΩT

n∑
j=1

∣∣∣∣x̃X2
ν0
νj

j ϕ(x, t)

∣∣∣∣ p
p−m

ϕ−
m
p−mdxdt

= R
−2p
p−mRµQR

p−1
p−m

∫
Ω
TR
− p−1
p−m

|Rx̃ϕ(Rµx̃, R
p−1
p−m t̃)|

p
p−mϕ−

m
p−mdx̃dt̃

≤ CRµQ− p+1
p−m ,

(5.286)

and also,∫
ΩT

ϕ−
p+1
p−1 (x, t)

∣∣∣∣ϕ(x, t)
∂2ϕ(x, t)

∂t2

∣∣∣∣p′ dxdt
=

∫
ΩT

ϕ−
p+1
p−1 (Rx̃,R

p−1
p−m t̃)

∣∣∣∣∣ϕ(Rx̃,R
p−1
p−m t̃)

∂2ϕ(Rx̃,R
p−1
p−m t̃)

∂t̃2

∣∣∣∣∣
p′

R
−2p′(p−1)
p−m dxdt

≤ R
−2p′(p−1)
p−m +µQ+ p−1

p−m

∫
Ω
TR
− p−1
p−m

ϕ−
p+1
p−1 (Rx̃,R

p−1
p−m t̃)

×

∣∣∣∣∣ϕ(Rx̃,R
p−1
p−m t̃)

∂2ϕ(Rx̃,R
p−1
p−m t̃)

∂t̃2

∣∣∣∣∣
p′

dx̃dt̃

≤ CRµQ− p+1
p−m .

(5.287)

Hence, we have ∫
ΩT

|u|pϕdxdt ≤ CRµQ− p+1
p−m . (5.288)

If 1 < m < p < pc = µQm+1
µQ−1

with µQ− 1 > 0 and R→∞, we get∫
ΩT

|u|pϕdxdt ≤ 0. (5.289)
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Therefore, we get u = 0. That is a contradiction, completing the proof. �

Corollary 5.57. In the Abelian case (Rn,+) with Q = n, R = −∆, and by taking
Euclidean distance instead of the quasi-norm, we claim the well-known results by Kato
[105].

Corollary 5.58. By Lemma 4.1.7 in [3], if G is a stratified Lie groups with R =
−∆G = −

∑n
1 X

2
i , where ∆G is a sub-Laplacian (i.e., ν0 = ν1 = . . . = νn, then

µ = 1), we obtain Kato’s exponent for the wave equation with the sub-Laplacian on
stratified Lie groups.

Corollary 5.59. That is a well-known one of the particular case of the stratified Lie
groups is the Heisenberg group ([3, p.174]). So, then in the case of the Heisenberg
group with m = 1 and m ∈ N we obtain the results by [101] and [102], respectively.

5.9.2. Wave equation with linear damping term. In this section we consider the initial
problem for the wave equation on the graded Lie group

utt(x, t) +R|u(x, t)|m + ut(x, t) = |u(x, t)|p, (x, t) ∈ G× (0,+∞) := Ω,

u(x, 0) = u0(x) ≥ 0, x ∈ G,
ut(x, 0) = u1(x), x ∈ G,

(5.290)
where R is the Rockland operator in the form

R =
n∑
j=1

(−1)
ν0
νj cjX

2
ν0
νj

j ,

and m, p > 0.

Definition 5.60. Suppose that u1, u0 ∈ L1
loc(G). We call that u ∈ L

max{m,p}
loc (ΩT )

(ΩT = G× (0, T )) is a local weak solution of the equation (5.290) if the identity∫
ΩT

u(x, t)
∂2ϕ(x, t)

∂t2
dxdt+

∫
ΩT

|u(x, t)|mRϕ(x, t)dxdt

−
∫

ΩT

u(x, t)
∂ϕ(x, t)

∂t
dxdt

=

∫
G
u0(x)

(
ϕ(x, 0) +

∂ϕ(x, 0)

∂t

)
dx

+

∫
G
u1(x)ϕ(x, 0)dx

+

∫
ΩT

|u(x, t)|pϕ(x, t)dxdt,

(5.291)

holds for all nonnegative test functions

ϕ ∈ C2((0, T ];L2(G)) ∩ C1([0, T ];Hγ(G)),

such that ϕ(x, T ) = 0. In the case T = +∞, the solution of the equation (5.291) u is
called a global weak solution.
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Theorem 5.61. Let G be graded groups with the homogeneous dimension Q ≥ 2 and
µ = max

j=1,...,n

νj
ν0

. Assume that p > 1 and
∫
G u1(x)dx ≥ 0. If

1 < m < p < pc = m+
2

µQ
, (5.292)

then the Cauchy problem (5.279) admits no global weak nonnegative solution other
than trivial.

Proof. Similarly to the previous theorem, we have∫
ΩT

|u|pϕdxdt ≤
∫
G
u1(x)ϕ(x, 0)dx+

∫
ΩT

|u|pϕdxdt

≤ C

∫
ΩT

ϕ−
p+1
p−1

∣∣∣∣ϕ∂2ϕ

∂t2

∣∣∣∣p′ dxdt
+ C

∫
ΩT

|Rϕ|
p

p−mϕ−
m
p−mdxdt

+ C

∫
ΩT

∣∣∣∣∂ϕ∂t
∣∣∣∣p′ ϕ− 1

p−1dxdt.

By assuming ∫
ΩT

∣∣∣∣∂ϕ∂t
∣∣∣∣p′ ϕ− 1

p−1dxdt <∞,

we obtain ∫
ΩT

|u|p ϕdxdt ≤ CRµQ− 2
p−m . (5.293)

By substituting x = Rµx̃ and t = R
2(p−1)
p−m t̃ with 1 < m < p < pc = m + 2

µQ
and,

letting R→∞, we get ∫
ΩT

|u|pϕdxdt ≤ 0. (5.294)

Hence, we get u = 0. �

Corollary 5.62. In the case, if G is a stratified Lie groups with R = −∆G =
−
∑n

1 X
2
i , where ∆G is a sub-Laplacian (i.e., ν0 = ν1 = . . . = νn, then µ = 1),

we obtain Kato’s type exponent for the linear damping wave equation with the sub-
Laplacian on stratified Lie groups.

Corollary 5.63. In the case of the Heisenberg group we obtain the result by [102].

5.9.3. Pseudo-hyperbolic equation case. In this subsection we show blow-up result for
the pseudo-hyperbolic equation with Rockland operator on graded Lie groups in the
following form:{

utt +Rutt +Ru = |u|p, (x, t) ∈ G× (0, T ) := ΩT , p > 1,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ G.
(5.295)

Let us give definition of the weak solution of the (5.295).
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Definition 5.64. We say that u is a local weak solution to (5.295) on Ω with initial
data u(x, 0) = u0(x) ∈ L1

loc(G), if u ∈ Lploc(ΩT ) and satisfies∫
ΩT

|u|pϕdxdt+

∫
G
u1(x)(ϕ(x, 0) +Rϕ(x, 0))dx

−
∫
G
u0(x)(ϕt(x, 0) +Rϕt(x, 0))dx

=

∫
ΩT

uϕttdxdt+

∫
ΩT

uRϕttdxdt+

∫
ΩT

uRϕdx, dt

for any test function ϕ with ϕ(x, T ) = ϕt(x, T ) = 0. The solution u is said global if
it exists on (0;∞).

Theorem 5.65. Let G be a graded Lie group with homogeneous dimension Q and
µ = max

j=1,...,n

νj
ν0

be such that µQ > 1. Assume that u1 ∈ L1(G) and∫
G
u1dx > 0. (5.296)

If

1 < p ≤ pc = 1 +
2

µQ− 1
, (5.297)

then there exists no nontrivial global weak solution of (5.295).

Proof. Firstly, we consider the case 1 < p < pc. From Definition 5.64 with ϕt(x, 0) =
0, we obtain∫

Ω

|u|pϕdxdt+

∫
G
u1(x)ϕ(x, 0)dx =

∫
Ω

uϕttdxdt

+

∫
Ω

Ruϕttdxdt+

∫
Ω

uRϕdxdt−
∫
G
u1(x)Rϕ(x, 0)dx

≤
∣∣∣∣∫

Ω

uϕttdxdt+

∫
Ω

uRϕttdxdt

+

∫
Ω

uRϕdxdt−
∫
G
u1(x)Rϕ(x, 0)dx

∣∣∣∣
≤
∫

Ω

|uϕtt|dxdt+

∫
Ω

|uRϕtt|dxdt

+

∫
Ω

|uRϕ|dxdt+

∫
G
|u1(x)Rϕ(x, 0)|dx.

(5.298)

Then from the Young inequality, we have∫
Ω

|u||ϕtt|dxdt =

∫
Ω

|u|ϕ
1
pϕ−

1
p |ϕtt|dxdt

≤ ε

∫
Ω

|u|pϕdxdt+ cε

∫
Ω

ϕ−
1
p−1 |ϕtt|

p
p−1dxdt,
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Ω

|u||Rϕtt|dtdx ≤ ε

∫
Ω

|u|pϕdtdx+ cε

∫
Ω

ϕ−
1
p−1 |Rϕtt|

p
p−1dxdt, (5.299)

and ∫
Ω

|u||Rϕ|dtdx ≤ ε

∫
Ω

|u|pϕdtdx+ cε

∫
Ω

ϕ−
1
p−1 |Rϕ|

p
p−1dxdt, (5.300)

for some positive constant cε. From using above facts, we get∫
Ω

|u|pϕdxdt+

∫
G
u1(x)ϕ(x, 0)dx

≤ C

(
Ap(ϕ) +Bp(ϕ) + Cp(ϕ) +

∫
G
|u1(x)||Rϕ(x, 0)|dx

)
,

(5.301)

where

Ap(ϕ) =

∫
Ω

ϕ−
1
p−1 |ϕtt|

p
p−1dxdt, (5.302)

Bp(ϕ) =

∫
Ω

ϕ−
1
p−1 |Rϕtt|

p
p−1dxdt, (5.303)

Cp(ϕ) =

∫
Ω

ϕ−
1
p−1 |Rϕ|

p
p−1dxdt. (5.304)

Let us choose the following test function

ϕR(x, t) = Φ

(
|x|2

Rµ

)
Φ

(
t2

R2

)
, R > 0, (5.305)

with the following property

Φ(r) =


1, if 0 ≤ r < 1,

↘, if 1 ≤ r < 2,

0, if r ≥ 2,

where Φ : R+ → [0, 1] is a sufficiently smooth nonincreasing function. We note that

∂ϕR(x, t)

∂t
=

2t

R2
Φ

(
|x|2

Rµ

)
Φ′t

(
t2

R2

)
, (5.306)

we have
∂ϕR(x, 0)

∂t
= 0. (5.307)

Let us estimate Ap(ϕR), Bp(ϕR), Cp(ϕR). By choosing variables x = Rµx̃ and t = Rt̃,
then

Ω̃ := {x ∈ G : 0 ≤ |x| ≤ 2} and Ω̂ := {t : 0 ≤ t2 ≤ 2}. (5.308)

By using Proposition 2.4, we calculate

Ap(ϕR) =

∫ ∞
0

∫
G
|ϕR(x, t)|−

p
p−1

∣∣∣∣∂2ϕR(x, t)

∂t2

∣∣∣∣ p
p−1

dxdt ≤ CRµQ+1− 2p
p−1 , (5.309)

Bp(ϕR) ≤ CRµQ+1− 4p
p−1 , (5.310)

and

Cp(ϕR) ≤ CRµQ+1− 2p
p−1 . (5.311)
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Also, we get that
|RϕR(x, t)| ≤ CR−2. (5.312)

By combining the estimates (5.309)-(5.311) in (5.301), we get∫
Ω

|u|pϕRdxdt+

∫
G
u1(x)ϕR(x, 0)dx

≤ C
(
RµQ+1− 2p

p−1 +RµQ+1− 4p
p−1 +RµQ+1− 4p

p−1

+

∫
Ω̃

|u1(x)||RϕR(x, 0)|dx
)

≤ C

(
RµQ+1− 2p

p−1 +

∫
Ω̃

|u1(x)||RϕR(x, 0)|dx
)
.

(5.313)

On the other hand, we get

lim infR→∞

∫
Ω

|u|pϕRdxdt+

∫
G
u1(x)ϕR(x, 0)dx

≥ lim inf
R→∞

∫
Ω

|u|pϕRdxdt

+ lim inf
R→∞

∫
G
u1(x)ϕR(x, 0)dx.

By using the monotone convergence theorem, we obtain

lim inf
R→∞

∫
Ω

|u|pϕRdxdt =

∫
Ω

|u|pdxdt.

Since u1 ∈ L1(G), by the dominated convergence theorem, we have

lim inf
R→∞

∫
G
u1(x)ϕR(x, 0)dx =

∫
G
u1(x)dx.

Now, we have

lim inf
R→∞

(∫
Ω

|u|pϕRdxdt+

∫
G
u1(x)ϕR(x, 0)dx

)
≥
∫

Ω

|u|pdxdt+ d,

where

d =

∫
G
u1(x)dx > 0.

By the definition of the limit, for every ε > 0 exists R0 > 0 such that∫
Ω

|u|pϕRdxdt+

∫
G
u1(x)ϕR(x, 0)dx

> lim inf
R→∞

(

∫
Ω

|u|pϕRdxdt+

∫
G
u1(x)ϕR(x, 0)dx)− ε

≥
∫

Ω

|u|pdxdt+ d− ε,

for every R ≥ R0. By taking ε = d
2
, we have∫

Ω

|u|pϕRdxdt+

∫
G
u1(x)ϕR(x, 0)dx ≥

∫
Ω

|u|pdxdt+
d

2
,
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for every R ≥ R0. Then from (5.313), (5.312) and u1 ∈ L1(G), we have∫
Ω

|u|pdxdt+
l

2
≤ C

(
RµQ+1− 2p

p−1 +

∫
Ω̃

|u1(x)||RϕR(x, 0)|dx
)

≤ C

(
RµQ+1− 2p

p−1 +R−2

∫
Ω̃

|u1(x)|dx
)

≤ C
(
RµQ+1− 2p

p−1 +R−2
)
.

(5.314)

Thus, we obtain

µQ+ 1− 2p

p− 1
< 0,

or

p < 1 +
2

µQ− 1
.

If R→∞, we get ∫
Ω

|u|pdxdt+
l

2
≤ 0.

This is a contradiction. Finally, we obtain∫
Ω

|u|pdxdt+
l

2
= 0.

Let us consider another case p = 1 + 2
µQ−1

. By using (5.314), we have∫
Ω

|u|pdxdt ≤ C <∞, (5.315)

then

lim
R→∞

∫
Ω

|u|pϕRdxdt = 0. (5.316)

Using the Hölder inequality instead of Young’s inequality in (5.298), we get∫
Ω

|u|pϕRdxdt+
d

2
≤ C

(∫
Ω̃

|u|pϕRdxdt
) 1

p

.

If R→∞ then by combining the above facts, we have∫
Ω

|u|pϕRdxdt+
d

2
= 0.

This contradiction completes the proof. �

Corollary 5.66. In the case, if G is a stratified Lie groups with R = −∆G =
−
∑n

1 X
2
i , where ∆G is a sub-Laplacian (i.e., ν0 = ν1 = . . . = νn, then µ = 1) and

cj = 1, j = 1, . . . , n, we obtain Kato-type exponent for the linear damping wave
equation with the sub-Laplacian on stratified Lie groups.

Corollary 5.67. In the case of the Heisenberg group, in particular, we obtain the
results of the paper [103].
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5.9.4. The case of system. Let us consider the system of the pseudo-hyperbolic Rock-
land equations with the Cauchy conditions:

utt +Rutt +Ru = |v|q, (x, t) ∈ G× (0, T ) := ΩT , q > 1,

vtt +Rvtt +Rv = |u|p, (x, t) ∈ G× (0, T ) := ΩT , p > 1,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ G,
v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ G.

(5.317)

Firstly, let us give a definition of the weak solution of (5.317) in the following form:

Definition 5.68. We say that the pair (u; v) is a local weak solution of (5.317) on
G with the Cauchy data (u(x, 0); v(x, 0)) = (u0; v0) ∈ L1

loc(G) × L1
loc(G), if (u, v) ∈

Lploc(ΩT )× Lqloc(ΩT ) satisfies∫
ΩT

|v|qϕdxdt+

∫
G
u1(x)(ϕ(x, 0) +Rϕ(x, 0))dx

−
∫
G
u0(x)(ϕt(x, 0) +Rϕt(x, 0))dx

=

∫
ΩT

uϕttdxdt+

∫
ΩT

uRϕttdxdt+

∫
ΩT

uRϕdxdt,

and ∫
ΩT

|u|pϕdxdt+

∫
G
v1(x)(ϕ(x, 0) +Rϕ(x, 0))dx

−
∫
G
v0(x)(ϕt(x, 0) +Rϕt(x, 0))dx

=

∫
ΩT

vϕttdxdt+

∫
ΩT

vRϕttdxdt+

∫
ΩT

vRϕdxdt,

for any test function ϕ with ϕ(·, T ) = ϕt(·, T ) = 0. The solution is said to be a global
if it exists for T = +∞.

Now we present the main result in the system case.

Theorem 5.69. Let G be a graded Lie group with homogeneous dimension Q and
µ = max

j=1,...,n

νj
ν0

be such that µQ > 1.Assume that (u1, v1) ∈ L1(G)× L1(G) with

∫
G
u1dx > 0, and

∫
G
v1dx > 0. (5.318)

If 1 < pq ≤ (pq)∗ = 1 + 2
µQ−1

max{p + 1; q + 1} then there exists no nontrivial weak

solution to (5.317).
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Proof. Similarly, with the of single equation with ϕt(x, 0) = 0, we get∫
Ω

|v|qϕdxdt+

∫
G
u1(x)ϕ(x, 0)dx

≤
∫

Ω

|u||ϕtt|dxdt+

∫
Ω

|u||Rϕtt|dxdt

+

∫
Ω

|u||Rϕ|dxdt+

∫
G
|u1(ϑ)||Rϕ(x, 0)|dx

and ∫
Ω

|u|pϕdxdt+

∫
G
v1(x)ϕ(x, 0)dx

≤
∫

Ω

|v||ϕtt|dxdt+

∫
Ω

|v||Rϕtt|dxdt

+

∫
Ω

|v||Rϕ|dxdt+

∫
G
|v1(x)||Rϕ(x, 0)|dx.

By choosing ϕ = ϕR, the test function given by (5.305) and from the Hölder inequal-
ity, we calculate

∫
Ω

|v|qϕRdxdt+

∫
G
u1(x)ϕ(x, 0)dx−

∫
G
|u1(x)||Rϕ(x, 0)|dx

≤ (Ap(ϕR)
p−1
p +Bp(ϕR)

p−1
p + Cp(ϕR)

p−1
p )

(∫
Ω

|u|pϕRdxdt
) 1

p

,

where Ap(ϕ), Bp(ϕ) and Cp(ϕ) are given in the single equation case. Similarly, by
the Hölder inequality, we have∫

Ω

|u|pϕRdxdt+

∫
G
v1(x)ϕ(x, 0)dx−

∫
G
|v1(x)||Rϕ(x, 0)|dx

≤ (Aq(ϕR)
q−1
q +Bq(ϕR)

q−1
q + Cq(ϕR)

q−1
q )

(∫
Ω

|v|qϕRdxdt
) 1

q

.

Assume that for the large R, we get∫
G
u1(x)ϕR(x, 0)dx−

∫
G
|u1(x)||RϕR(x, 0)|dx ≥ 0,∫

G
v1(x)ϕR(x, 0)dx−

∫
G
|v1(x)||RϕR(x, 0)|dx ≥ 0.

(5.319)

Then, we have∫
Ω

|v|qϕRdxdt ≤ (Ap(ϕR)
p−1
p +Bp(ϕR)

p−1
p +Cp(ϕR)

p−1
p )

(∫
Ω

|u|pϕRdxdt
) 1

p

, (5.320)

and∫
Ω

|u|pϕRdxdt ≤ (Aq(ϕR)
q−1
q +Bq(ϕR)

q−1
q +Cq(ϕR)

q−1
q )

(∫
Ω

|v|qϕRdxdt
) 1

q

. (5.321)
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By choosing variables t = R−1t and x = R−µx, we get∫
Ω

|v|qϕRdxdt ≤ CR
µQ(p−1)−(p+1)

p

(∫
Ω

|u|pϕRdxdt
) 1

p

, (5.322)

and ∫
Ω

|u|pϕRdxdt ≤ CR
µQ(q−1)−(q+1)

q

(∫
Ω

|v|qϕRdxdt
) 1

q

. (5.323)

By using the last two inequalities, we have(∫
Ω

|u|pϕRdxdt
)1− 1

pq

≤ CRα1 , (5.324)

and (∫
Ω

|v|qϕRdxdt
)1− 1

pq

≤ CRα2 , (5.325)

where

α1 =
µQ(pq − 1)− pq − 2q − 1

pq

and

α2 =
µQ(pq − 1)− pq − 2p− 1

pq
.

Then we need α1, α2 < 0.
Secondly, let us consider the case 1 < pq < 1 + 2

µQ−1
max{p+ 1; q + 1}.

Case 1: 1 < pq < 1 + 2
µQ−1

max{p+ 1; q + 1}. By letting R→∞ in (5.324) with

1 < q ≤ p, we have ∫
Ω

|u|pdxdt = 0,

which is a contradiction. Similarly, in the case 1 < p ≤ q, from (5.325), we have∫
Ω

|v|qdxdt = 0.

Case 2: pq = 1 + 2
µQ−1

max{p + 1; q + 1}. This case is similar with the proof of

Theorem 5.65.
�

Corollary 5.70. In the case p = q and u = v in Theorem 5.69, we arrive at a single
equation given by Theorem 5.65.

Proof. From Theorem 5.69, we get

p2 ≤ 1 +
2(p+ 1)

µQ− 1
,

and

p2 − 1 ≤ 2(p+ 1)

µQ− 1
.



162

Then dividing both sides by p+ 1, we obtain

p− 1 ≤ 2

µQ− 1
. (5.326)

�

Corollary 5.71. In the case, if G is a stratified Lie groups with R = −∆G =
−
∑n

1 X
2
i , where ∆G is a sub-Laplacian (i.e., ν0 = ν1 = . . . = νn, then µ = 1),

we obtain Kato’s type exponent for the linear damping wave equation with the sub-
Laplacian on stratified Lie groups.

Corollary 5.72. In the case of the Heisenberg group, in particular, we obtain the
result by [103].

5.10. Fujita type exponents for the heat Rockland equations. In the one of
the most popular works of Fujita in [106] considered the nonlinear heat equation{

ut(x, t)−∆u(x, t) = u1+p, (x, t) ∈ RN × (0,∞),

u(x, 0) = u0(x) ≥ 0, x ∈ RN ,
(5.327)

for the subject of blowing up. He obtained that if 0 < p < 2
N

a solution of the problem
(5.327) blows up in finite time for some x0 ∈ RN , N ∈ N. One of the further general-
isations of the problem (5.327) is considering the fractional Laplacian (−∆)s instead
of the classical Laplacian −∆. Namely, in [107, 108, 109] the authors considered the
following Cauchy problem. In this dissertation we show Fujita’s exponent for the
heat Rockland operator and we show necessary condition for the global solvability.

The critical Fujita exponent determined as p∗ = 1 + 2
N

for the pseudo-parabolic
equation in the Euclidean case were firstly established in the papers [110], [111].
In [112] authors studied the nonexistence of the global solutions to the nonlinear
pseudo-parabolic equation on the Heisenberg group

ut + (−∆Hn)mut + (−∆Hn)mu = |u|p, (η, t) ∈ Hn × (0,∞), (5.328)

with the Cauchy data
u(η, 0) = u0(η), η ∈ Hn, (5.329)

where m > 1, p > 1, ∆Hn is the Kohn-Laplace operator on (2 × 2)-dimensional
Heisenberg group Hn. For more details, the reader referred to [112] and references
therein, [113], [114].

5.10.1. Fujita exponent for the Heat Rockland equation. Let us consider the Cauchy
problem for the nonlinear heat Rockland equation in the following form:{

ut(x, t) +Rα{u}m(x, t) = up(x, t), (x, t) ∈ G× (0,+∞) := Ω∞,

u(x, 0) = u0(x) ≥ 0, x ∈ G,
(5.330)

where α > 0, m ∈ N, and R is a Rockland operator of the k-th order, that is,

R =
n∑
j=1

(−1)
ν0
νj cjX

2
ν0
νj

j .

ByRα we understand fractional Rockland operator as Proposition 2.14. Let us denote
by Cα,1x,t (ΩT ) the space of test functions ϕ with a compact support suppϕ ⊂ ΩT
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such that ϕ, ∂tϕ and Rαϕ are continuous functions on ΩT with compact supports
supp ∂tϕ, suppRαϕ ⊂ ΩT , where ΩT := G× (0, T ) for some T > 0.

Let us give a definition of the weak solution to the equation (5.330).

Definition 5.73. Fix T > 0. Assume that u0 ∈ L1(ΩT ) (ΩT = G× (0, T )). Then we
call the function u ∈ Lp(ΩT )∩Lm(ΩT ) a local weak solution of (5.330) if the identity

−
∫

ΩT

u(x, t)
∂ϕ(x, t)

∂t
dxdt+

∫
ΩT

{u}m(x, t)Rαϕ(x, t)dxdt

=

∫
G
u0(x)ϕ(x, 0)dx+

∫
ΩT

up(x, t)ϕ(x, t)dxdt, (5.331)

holds for all positive test functions ϕ from Cα,1x,t (ΩT ) such that ϕ(x, T ) = 0.
If it is allowed to be T = +∞ then u is called a global weak solution of the equation

(5.330).

Theorem 5.74. Assume that G be the graded Lie group with homogeneous dimension
Q ≥ 2. Assume that

1 < p ≤ pc = m+
kα

Q
. (5.332)

Then the Cauchy problem (5.330), admits no global weak nonnegative solutions other
than trivial.

Proof. We prove this theorem by contradiction. By using (5.330) and Definition 5.55,
we have

∫
ΩT

|u|pϕdxdt ≤
∫

ΩT

|u|pϕdxdt+

∫
G
u0(x)ϕ(x, 0)dx

= −
∫

ΩT

u(x, t)
∂ϕ(x, t)

∂t
dxdt+ C

∫
ΩT

|u(x, t)|mRαϕ(x, t)dxdt,

(5.333)

for some constant C > 0.
From s-Young’s inequality

ab ≤ sal +
1

s
bl
′
,

1

l
+

1

l′
= 1, a, b ≥ 0,
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we get∫
ΩT

upϕdxdt ≤ −
∫

ΩT

u(x, t)
∂ϕ(x, t)

∂t
dxdt+ C

∫
ΩT

|u(x, t)|mRαϕ(x, t)dxdt

=

∫
ΩT

ϕ−
1
p
∂ϕ(x, t)

∂t
(−u(x, t))ϕ

1
pdxdt+ C

∫
ΩT

ϕ
m
p |u(x, t)|mRαϕ(x, t)ϕ−

m
p dxdt

≤ 1

4

∫
ΩT

upϕdxdt+ C1

∫
ΩT

ϕ−
p′
p

∣∣∣∣∂ϕ∂t
∣∣∣∣p′ dxdt+

1

4

∫
ΩT

upϕdxdt

+ C2

∫
ΩT

ϕ
−m
p−m |Rαϕ|

p
p−mdxdt

=
1

2

∫
ΩT

upϕdxdt+ C1

∫
ΩT

ϕ−
p′
p

∣∣∣∣∂ϕ∂t
∣∣∣∣p′ dxdt+ C2

∫
ΩT

ϕ
−m
p−m |Rαϕ|

p
p−mdxdt,

(5.334)

where

C1

∫
ΩT

ϕ−
p′
p

∣∣∣∣∂ϕ∂t
∣∣∣∣p′ dxdt+ C2

∫
ΩT

ϕ
−m
p−m |Rαϕ|

p
p−mdxdt <∞ (5.335)

and C,C1, C2 are positive constants, then∫
ΩT

upϕdxdt ≤ C1

∫
ΩT

ϕ−
p′
p

∣∣∣∣∂ϕ∂t
∣∣∣∣p′ dxdt+ C2

∫
ΩT

ϕ
−m
p−m |Rαϕ|

p
p−mdxdt. (5.336)

Let Φ1,Φ2 : R+ → [0, 1] be smooth nonincreasing functions such that

Φ(z) :=

{
1, if 0 ≤ z ≤ 1,

0, if z ≥ 2.
(5.337)

For R > 0, we define

ϕ(x, t) = Φ

(
|x|
R

)
Φ

(
t

Rβ

)
.

By substituting variables x = Rx̃ and t = Rβ t̃ and by using Proposition 2.4 and
(5.335), we get ∫

ΩT

ϕ−
p′
p (x, t)

∣∣∣∣∂ϕ(x, t)

∂t

∣∣∣∣ p
p−1

dxdt ≤ CR−β
p
p−1

+Q+β, (5.338)

and ∫
ΩT

ϕ
−m
p−m |Rαϕ|

p
p−mdxdt ≤ CR−kα

p
p−m+Q+β. (5.339)

Then by from (5.338) and (5.339), we have∫
ΩT

|u|pϕdxdt ≤ C(R−β
p
p−1

+Q+β +R−kα
p

p−m+Q+β). (5.340)

Let us choose β = Q(m− 1) + kα. Then, if 1 < p < m+ kα
Q

, we obtain∫
ΩT

updxdt = lim
R→∞

∫
ΩT

upϕdxdt ≤ 0. (5.341)
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Hence, u = 0. This is a contradiction. �

5.10.2. Necessary conditions for local and global existence. In this subsection we
present necessary conditions for the existence of local and global solutions to the
equation (5.330).

Theorem 5.75. Suppose p > m and α > 0. Assume that u be a local solution to
(5.330) for T <∞. Then we have the estimate

lim
|x|→∞

inf u0(x) ≤ C T 1−p′ , (5.342)

for a positive constant C, where 1
p

+ 1
p′

= 1.

Proof. By denoting the following test function

ϕ(x, t) = Φ

(
|x|
R

)
Φ

(
t

T

)
, (5.343)

where Φ is a smooth nonnegative function with a compact support and

Φ2

(
t

T

)
:=

{(
1− t

T

)l
, 0 < t ≤ T,

0, t > T,
(5.344)

where l > p′ − 1. By combining Definition 5.73 and s-Young’s inequality, we get∫
G
u0(x)ϕ(x, 0)dx+

∫
ΩT

upϕdxdt

≤ −
∫

ΩT

∂ϕ(x, t)

∂t
u(x, t)dxdt+

∫
ΩT

{u}m(x, t)Rαϕ(x, t)dxdt

=

∫
ΩT

ϕ−
1
p
∂ϕ(x, t)

∂t
(−u(x, t))ϕ

1
pdxdt+

∫
ΩT

ϕ
1
p{u}m(x, t)Rαϕ(x, t)ϕ−

1
pdxdt

≤ 1

2

∫
ΩT

upϕdxdt+ C

∫
ΩT

ϕ−
p′
p

∣∣∣∣∂ϕ∂t
∣∣∣∣p′ dxdt+

1

2

∫
ΩT

|u|pϕdxdt

+ C

∫
ΩT

ϕ
−m
p−m |Rαϕ|

p
p−mdxdt

=

∫
ΩT

upϕdxdt+ C

∫
ΩT

ϕ−
p′
p

∣∣∣∣∂ϕ∂t
∣∣∣∣p′ dxdt+ C

∫
ΩT

ϕ
−m
p−m |Rαϕ|

p
p−mdxdt.

(5.345)

Finally, we have∫
G
u0(x)ϕ(x, 0)dx ≤ C

∫
ΩT

ϕ−
p′
p

∣∣∣∣∂ϕ∂t
∣∣∣∣p′ dxdt+ C

∫
ΩT

ϕ
−m
p−m |Rαϕ|

p
p−mdxdt. (5.346)

By substituting t = T t̃ and x = Rx̃ and by using Proposition 2.4, we get

RQ

∫
G
u0(Rx̃)Φ1(x̃)dx̃ ≤ CRQT

−p′
p

∫
G

Φ1(x̃)dx̃+ CTRQ− kαp
p−m

∫
G

Φ1(x̃)dx̃, (5.347)
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and, we obtain∫
G
u0(Rx̃)Φ1(x̃)dx̃ ≤ CT

−p′
p

∫
G

Φ1(x̃)dx̃+ CTR−
kαp
p−m

∫
G

Φ1(x̃)dx̃

= C(T
−p′
p + TR−

kαp
p−m )

∫
G

Φ1(x̃)dx̃. (5.348)

Hence, we obtain

C(T
−p′
p + TR−

kαp
p−m )

∫
G

Φ1(x̃)dx̃ ≥
∫
G
u0(Rx̃)Φ1(x̃)dx̃

= inf
q(x̃)>1

(u0(Rx̃))

∫
G

Φ1(x̃)dx̃, (5.349)

and by dividing to
∫
G Φ1(x̃)dx̃ both sides, we get

inf
q(x̃)>1

u0(Rx̃) ≤ C(T
−p′
p + TR−

kαp
p−m ). (5.350)

By letting R→∞, we have

lim
|x|→∞

inf u0(x) ≤ CT
−p′
p . (5.351)

�

Now, we show a necessary condition of the existence of the global solution.

Theorem 5.76. Assume that p > m and α > 0 be such that 0 < γ < kα
p−m . Suppose

that the problem (5.330) has a nontrivial and nonnegative global weak solution. Then
the initial function u0 satisfies the condition

lim
|x|→∞

inf(u0(x)|x|γ) ≤ C, (5.352)

where C is a positive constant independent of u.

Proof. Continuing discussions of the proof of the previous theorem, by (5.348), we
have ∫

G
u0(Rx̃)Φ(x̃)dx̃ ≤ C(T

−p′
p + TR−

kαp
p−m )

∫
G

Φ(x̃)dx̃. (5.353)

From supp Φ ⊂ {x : R < |x| < 2R}, we obtain

inf
|x|>R

(u0(x)|x|γ)
∫
G

Φ(x̃)|Rx̃|−γdx̃

≤
∫
G
u0(Rx̃)|Rx̃|p′−1Φ(x̃)|Rx̃|1−p′dx̃

≤ C(T
−p′
p + TR−

kαp
p−m )

∫
G
|Rx̃|γΦ(x̃)|Rx̃|−γdx̃

≤ C(T
−p′
p + TR−

kαp
p−m )Rγ

∫
G

Φ(x̃)|Rx̃|−γdx̃.

(5.354)
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Since 0 < γ < kα
p−m , we have

inf
|x|>R

(u0(x)|x|γ) ≤ C(T
−p′
p + TR−

kαp
p−m )Rγ. (5.355)

By changing T = Rγ(p−1), we get

inf
|x|>R

(u0(x)|x|γ) ≤ C(1 +R−( kα
p−m−γ)p), (5.356)

and as R→∞, we have

inf
|x|→∞

(u0(x)|x|γ) ≤ C. (5.357)

�

5.10.3. Fujita exponent for the pseudo-parabolic Rockland equation. In this subsec-
tion, we concern nonexistence of global weak solutions to the following nonlinear
pseudo–parabolic equation

ut(x, t)+Rut(x, t)+Ru(x, t) = |u(x, t)|p+f(x, t), (x, t) ∈ G×(0,∞) := Ω, (5.358)

under the initial condition

u(x, 0) = u0(x), x ∈ G. (5.359)

Similarly, with the heat Rockland equation case, We denote by Cα,1x,t (ΩT ) the space
of test functions ϕ with a compact support supp ϕ ⊂ ΩT such that ϕ, ∂tϕ, Rϕ and
∂tRϕ are continuous functions on ΩT with compact supports supp ∂tϕ, suppRϕ, supp ∂tRϕ ⊂
ΩT .

Definition 5.77. We say that u is a global weak solution to the problem (5.358)–
(5.359) on Ω with the initial data u(·, 0) = u0(·) ∈ L1

loc(G), if u ∈ Lploc(Ω) and satisfies∫
Ω

|u|pϕdxdt+

∫
G
u0(x)ϕ(x, 0)dx+

∫
Ω

fϕdxdt

= −
∫

Ω

uϕtdxdt+

∫
Ω

u(Rϕ)tdxdt−
∫

Ω

uRϕdxdt+

∫
G
u0(x)Rϕ(x, 0)dx

(5.360)

for any regular test function ϕ with ϕ(·, t) = 0 for large enough t.

For R > 0, we define

ΓR = {(x, t) ∈ Ω : 0 ≤ t ≤ Rα, 0 ≤ |x| ≤ R}.

Theorem 5.78. Suppose that R is a Rockland operator of k-th order. Let u0 ∈ L1(G)
and f− ∈ L1(Ω), where f− = max{−f, 0}. Suppose that∫

G
u0dx+ lim

R→∞
inf

∫
ΓR

fdxdt > 0. (5.361)

If 1 < p ≤ p∗ = 1 + k
Q
, then the problem (5.358)–(5.359) does not admit any global

weak solution.
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Proof. Suppose that u is a global weak solution to the problem (5.358)–(5.359). Then,
we have ∫

Ω

|u|pϕdxdt+

∫
G
u0(x)ϕ(x, 0)dx+

∫
Ω

fϕdxdt

≤
∫

Ω

|u||ϕt|dxdt+

∫
Ω

|u||(Rϕ)t|dxdt−
∫

Ω

|u||Rϕ|dxdt

+

∫
G
|u0(x)||Rϕ(x, 0)|dx.

(5.362)

By using the ε-Young’s inequality

ab ≤ εap + C(ε)bp
′
,

1

p
+

1

p′
= 1, a, b ≥ 0,

with parameters p and p/(p− 1), we obtain∫
Ω

|u||ϕt|dxdt ≤ ε

∫
Ω

|u|pϕdxdt+ cε

∫
Ω

ϕ
−1
p−1 |ϕt|

p
p−1dxdt, (5.363)

for some positive constant cε.
Similarly, we have∫

Ω

|u||(Rϕ)t|dxdt ≤ ε

∫
Ω

|u|pϕdxdt+ cε

∫
Ω

ϕ
−1
p−1 |(Rϕ)t|

p
p−1dxdt, (5.364)

and ∫
Ω

|u||Rϕ|dxdt ≤ ε

∫
Ω

|u|pϕdtdt+ cε

∫
Ω

ϕ
−1
p−1 |Rϕ|

p
p−1dtdt. (5.365)

By using (5.362)-(5.365), for ε > 0 small enough, we have∫
Ω

|u|pϕdxdt+

∫
Ω

u0(x)ϕ(x, 0)dx+

∫
Ω

fϕdxdt

≤ C
(
Ap(ϕ) +Bp(ϕ) + Cp(ϕ) +

∫
G
|u0(x)||Rϕ(x, 0)|dx

)
,

(5.366)

where

Ap(ϕ) =

∫
Ω

ϕ
−1
p−1 |ϕt|

p
p−1dxdt, (5.367)

Bp(ϕ) =

∫
Ω

ϕ
−1
p−1 |(Rϕ)t|

p
p−1dxdt, (5.368)

Cp(ϕ) =

∫
Ω

ϕ
−1
p−1 |Rϕ|

p
p−1dxdt. (5.369)

Let Φ1,Φ2 : R+ → [0, 1] be smooth nonincreasing functions such that

Φi(ρ) :=

{
1, if 0 ≤ ρ ≤ 1,

0, if ρ ≥ 2,
(5.370)

for i = 1, 2.
Now, for R > 0, let us consider the test function

ϕR(x, t) = Φ1

(
|x|
R

)
Φ2

(
t

Rα

)
,
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for some α > 0 to be defined later.
We observe that supp ϕR is a subset of

ΩR = {(x, t) ∈ Ω : 0 ≤ t ≤ 2Rα, 0 ≤ |x| ≤ 2R},
while supp ∂tϕR, suppRϕR and supp ∂tRϕR are subsets of

ΘR = {(x, t) ∈ Ω : Rα ≤ t ≤ 2Rα, R ≤ |x| ≤ 2R},
also, we put

ΓR = {(x, t) ∈ Ω : 0 ≤ t ≤ Rα, 0 ≤ |x| ≤ R}.
It follows that there is a positive constant C > 0, independent of R, such that for

all (x, t) ∈ ΩR, we have

|RxϕR(t, x)| ≤ CR−kχ(t, x), (5.371)

where χ(t, x) is a nonnegative function with a compact support in ΩR, and

|∂tRϕR(t, x)| ≤ CR−k−αξ(t, x), (5.372)

where ξ(t, x) is a nonnegative function with a compact support in ΩR.
Using (5.371) and (5.372), we get

Ap(ϕ) ≤ CR
−αp
p−1 , (5.373)

Bp(ϕR) ≤ CR
−(k+α)p
p−1 , (5.374)

Cp(ϕR) ≤ CR
−kp
p−1 . (5.375)

Let us consider now the change of variables

t̃ = R−αt, x̃ = R−1x.

Put ΣR = {x ∈ G : R ≤ |x| ≤ 2R}.
By combining Proposition 2.4, (5.373), (5.374) and (5.375) in (5.366) we get∫

Ω

|u|pϕRdxdt+

∫
Ω

u0(x)ϕR(x, 0)dxdt+

∫
Ω

fϕRdxdt

≤ C
(
Rλ1 +Rλ2 +Rλ3 +

∫
ΣR

|u0(v)||RϕR(0, v)|dv
)
, (5.376)

where

λ1 = Q+ α− αp

p− 1
and

λ2 = Q+ α− (k + α)p

p− 1
and

λ3 = Q+ α− kp

p− 1
.
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On the other hand, we have

lim
R→∞

inf
(∫

Ω

|u|pϕRdxdt+

∫
G
u0(x)ϕR(x, 0)dx+

∫
Ω

fϕRdxdt
)

≥ lim
R→∞

inf

∫
Ω

|u|pϕRdxdt+ lim
R→∞

inf

∫
Ω

u0(x)ϕR(x, 0)dx+ lim
R→∞

inf

∫
Ω

fϕRdxdt.

From the monotone convergence theorem, we get

lim
R→∞

inf

∫
Ω

|u|pϕRdxdt =

∫
Ω

|u|pdxdt.

Since u0 ∈ L1(Ω), by the dominated convergence theorem, we have

lim
R→∞

inf

∫
G
u0(x)ϕR(x, 0)dx =

∫
G
u0(x)dx.

By denoting f = f+ − f−, where f+ = max{f, 0}, we have∫
Ω

fϕRdxdt =

∫
ΓR

fdxdt+

∫
ΘR

f+ϕRdxdt−
∫

ΘR

f−ϕRdxdt

≥
∫

ΓR

fdxdt−
∫

ΘR

f−ϕRdxdt.

Since f− ∈ L1(Ω), by the dominated convergence theorem we have

lim
R→∞

∫
ΘR

f−ϕRdxdt = 0

Then

lim
R→∞

inf

∫
Ω

fϕRdxdt ≥ lim
R→∞

inf

∫
ΓR

fdxdt.

Then, we get

lim
R→∞

inf
(∫

Ω

|u|pϕRdxdt+

∫
Ω

u0(x)ϕR(x, 0)dx+

∫
Ω

fϕRdxdt
)

≥
∫

Ω

|u|pdxdt+ `.

where form (5.361),

` =

∫
Ω

u0(x)dx+ lim
R→∞

inf

∫
ΓR

fdxdt > 0.

By the definition of the limit inferior, for every ε > 0, there exists R0 > 0 such that∫
Ω

|u|pϕRdxdt+

∫
Ω

u0(x)ϕR(x, 0)dx+

∫
Ω

fϕRdxdt
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> lim
R→∞

inf
(∫

Ω

|u|pϕRdxdt+

∫
Ω

u0(x)ϕR(x, 0)dx+

∫
Ω

fϕRdxdt
)
− ε

≥
∫

Ω

|u|pdxdt+ `− ε,

for every R ≥ R0. Taking ε = `/2, we get∫
Ω

|u|pϕRdxdt+

∫
Ω

u0(x)ϕR(x, 0)dx+

∫
Ω

fϕRdxdt

≥
∫

Ω

|u|pdxdt+
`

2
,

for every R ≥ R0. From (5.376), we have∫
Ω

|u|pdxdt+
`

2
≤ C

(
Rλ1 +Rλ2 +Rλ3 +

∫
ΣR

|u0(x)||RxϕR(x, 0)|dx
)
, (5.377)

for R large enough.
Now, we take α = k and require that λ = max{λ1, λ2, λ3} ≤ 0, which is equivalent

to 1 < p ≤ 1 + k
Q

. We consider two cases.

• Case 1. If 1 < p < 1 + k
Q

.

In this case, letting R → ∞ in (5.377) and using the dominated convergence
theorem, we obtain ∫

Ω

|u|pdxdt+
`

2
≤ 0,

which is a contradiction with ` > 0.

• Case 2. If p = 1 + k
Q

.

In this case, from (5.377), we obtain∫
Ω

|u|pdxdt ≤ C <∞. (5.378)

By using the Hölder inequality with parameters p and p/(p − 1) and from (5.362),
we get ∫

Ω

|u|pdxdt+
`

2
≤ C

(∫
ΘR

|u|pϕRdxdt
) 1
p
.

By letting R→∞ in the above inequality and using (5.378), we have∫
Ω

|u|pdxdt+
`

2
= 0
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This contradiction completes the proof of the theorem. �
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6. Appendix

In this appendix we deal with new inequalities related to the fractional order differ-
ential operators. Especially, the Caputo derivative analogues of the above inequalities
are in the field of our interest. Here, we derive the generalizations of the classi-
cal Sobolev, Hardy, Gagliardo-Nirenberg and Caffarelli-Kohn-Nirenberg inequalities.
Note that in this direction systematic studies of different functional inequalities on
general homogeneous (Lie) groups were initiated by the book [4]. Also, we obtain
these inequalities for Hadamard fractional derivative.

One of the Lyapunov’s classical result in [67], he established that if q ∈ C ([a, b];R) ,
for the boundary value problem{

u′′(t) + q(t)u(t) = 0, x ∈ (a, b),
u(a) = u(b) = 0,

(6.1)

has a nontrivial classical solution, then we have

b∫
a

|q(s)| ds > 4

b− a
. (6.2)

In [115], Hartman and Wintner generalised Lyapunov’s inequality, it means if (6.1)
has a nontrivial solution, then

b∫
a

(b− s)(s− a)q+(s)ds > b− a, (6.3)

where q+(s) = max{q(s), 0}. Generalisation of the Lyapunov’s inequality (6.2) can

be obtained from (6.3) using the fact that max
a≤s≤b

(b−s)(s−a) = (b−a)2

4
. Recently, some

Hartman-Wintner-type inequalities were obtained for different fractional boundary
value problems [116, 117].

In the [118], De La Vallée Poussin showed the following result:

Theorem 6.1. Suppose that u ∈ C2([a, b]) is a nontrivial solution to{
−u′′(x)− g(x)u′(x) = f(x)u(x), x ∈ (a, b),
u(a) = 0, u(b) = 0,

(6.4)

for f, g ∈ C([a, b]). Then

1 < M1(b− a) +M2
(b− a)2

2
, (6.5)

where M1 = max
x∈[a,b]

|g(x)| and M2 = max
x∈[a,b]

|f(x)|.

As example, generalisation of the inequality (6.5) can be found in[119, 120]. Also,
generalisation of above inequalities to the multidimensional case were generalised
in the works [121, 122]. Motivated by the above cited works, using the approach
introduced in [121, 122], some generalisations of above mentioned inequalities are
established for fractional partial differential equations with Dirichlet conditions. Our
results are natural generalizations of results in [122, 121]. In this dissertation, we
established these inequalities for the fractional order derivatives.
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Let us recall the Riemann–Liouville fractional integrals and derivatives. Also, we
give definitions of the Caputo fractional derivatives. In ([123], p. 394) the sequential
differentiation was formulated in a way that we will use in the further investigations.
We refer to [124, 123] and references therein for further properties.

Definition 6.2. The left Riemann–Liouville fractional integral Iαa+ of order α > 0,
and right Riemann–Liouville Iαb− of order 0 < α ≤ 1 are given by

Iαa+ [f ] (t) =
1

Γ (α)

t∫
a

(t− s)α−1 f (s)ds, t ∈ (a, b],

and

Iαb− [f ] (t) =
1

Γ (α)

b∫
t

(s− t)α−1 f (s)ds, t ∈ [a, b),

respectively. Here Γ denotes the Euler gamma function.
The left Riemann–Liouville fractional derivative Dα

a+ of order α ∈ R (0 < α < 1)
of a continuous function f on [a, b] is defined by

Dα
a+ [f ] (t) =

d

dt
I1−α
a+ [f ] (t) , for any t ∈ (a, b].

Similarly, the right Riemann–Liouville fractional derivative Dα
b− of order α ∈ R (0 <

α < 1) of a continuous function f on [a, b] is given by

Dα
b− [f ] (t) = − d

dt
I1−α
b− [f ] (t) , for any t ∈ [a, b).

and

Dα
a+ [f ] (t) =

d

dt
I1−α
a+ [f ] (t) , t ∈ (a, b],

respectively and f ∈ AC[a, b]. Here Γ denotes the Euler gamma function.
Since Iαf(t) → f(t) almost everywhere as α → 0, then by definition we suppose

that I0f(t) = f(t). Hence D1
a+f(t) = f ′(t).

Definition 6.3. The left and right Caputo fractional derivatives of order α ∈ R
(0 < α < 1) of a differentiable function f on [a, b] are defined by

Dαa+ [f ] (t) = Dα
a+ [f (t)− f (a)] , t ∈ (a, b],

and
Dαb− [f ] (t) = Dα

b− [f (t)− f (b)] , t ∈ [a, b),

respectively.

Remark 6.4. In Definition 6.3, if f(a) = 0, then Dαa+ = Dα
a+.

Proposition 6.5. If f ∈ L1([a, b]) and α > 0, β > 0, then the following equality
holds

Iαa+I
β
a+f(t) = Iα+β

a+ f(t).

Proposition 6.6 ([123]). If f ∈ L1([a, b]) and f ′ ∈ L1([a, b]), then the equality

IαaDαa+f(t) = f(t)− f(a), 0 < α ≤ 1,

holds almost everywhere on [a, b].
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Let us give some defintion of the Hadamard fractional derivative.

Definition 6.7. The left Hadamard fractional integrals Iαa+ of order α > 0, and
derivatives Dα

a+ of order 0 < α < 1 are given by

Iαa+ [f ] (t) =
1

Γ (α)

∫ t

a

(
log

t

s

)α−1

f (s)
ds

s
, t ∈ (a, b],

and

Dα
a+ [f ] (t) =

1

Γ(1− α)

∫ t

a

(
log

t

s

)−α
f ′ (s)

ds

s
. t ∈ (a, b].

Here Γ denotes the Euler gamma function.

Proposition 6.8 ([123]). If f ∈ L1(a, b) and f ′ ∈ L1
1
x

(a, b), then the equality

IαaD
α
a+f(t) = f(t)− f(a), 0 < α < 1,

holds almost everywhere on [a, b].

Then let us define weighted Lebesgue space with the norm:

‖u‖Lp1
x

(a,b) :=

(∫ b

a

|u(x)|pdx
x

) 1
p

. (6.6)

Proposition 6.9 ([123]). If f ∈ L1
1
x

(a, b) and α > 0, β > 0, then the following

equality holds

Iαa+I
β
a+f(t) = Iα+β

a+ f(t).

Let us give definitions of the fractional and fractional p-Laplacian on RN :

Definition 6.10. Let Ω ⊂ RN be a bounded open set, 0 < s < 1. The fractional
Laplacian operator of order s of a function u ∈ C∞0

(
RN
)

is defined by

(−∆)su(x) = 2 lim
δ↘0

∫
RN\B(x,δ)

u(x)− u(y)

|x− y|N+2s
dy, x ∈ RN , (6.7)

where B(x, δ) is a ball at centered at x ∈ RN with radius δ.

Definition 6.11. Let Ω ⊂ RN be a bounded open set, 0 < s < 1 and 1 < p < ∞.
The fractional p-Laplacian operator of order s of a function u ∈ C∞0

(
RN
)

is defined
by

(−∆)spu(x) = 2 lim
δ↘0

∫
RN\B(x,δ)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
dy, x ∈ RN . (6.8)

In this appendix we derive the main results of the dissertation. In this subsection
we show fractional order Poincaré–Sobolev type inequality.
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6.1. Poincaré–Sobolev type inequality for the Caputo fractional derivative.

Theorem 6.12. Let u ∈ Lp(a, b), u(a) = 0, Dαa+u ∈ Lp(a, b) and p > 1. Then for

the Dαa+ Caputo fractional derivative of order α ∈
(

1
p
, 1
]

we have the inequality

‖u‖L∞(a,b) ≤
(b− a)α−

1
p(

αp
p−1
− 1

p−1

) p−1
p

Γ(α)

∥∥Dαa+u
∥∥
Lp(a,b)

. (6.9)

Proof. Let u ∈ Lp(a, b), u(a) = 0, Dαa+u ∈ Lp(a, b) and consider the function

u(t) = Iαa+Dαa+u(t). (6.10)

Using the Hölder inequality with 1
p

+ 1
q

= 1, we obtain

∣∣Iαa+Dαa+u(t)
∣∣ ≤ 1

Γ(α)

t∫
a

∣∣(t− s)α−1Dαa+u(s)
∣∣ ds

≤ 1

Γ(α)

 t∫
a

(t− s)αq−qds


1
q
 t∫

a

∣∣Dαa+u(s)
∣∣p ds


1
p

α> 1
p

=
(t− a)α−1+ 1

q

(αq − q + 1)
1
q Γ(α)

 t∫
a

∣∣Dαa+u(s)
∣∣p ds


1
p

≤ (b− a)α−1+ 1
q

(αq − q + 1)
1
q Γ(α)

∥∥Dαa+u
∥∥
Lp(a,b)

=
(b− a)α−

1
p

(αq − q + 1)
1
q Γ(α)

∥∥Dαa+u
∥∥
Lp(a,b)

=
(b− a)α−

1
p(

αp
p−1
− 1

p−1

) p−1
p

Γ(α)

∥∥Dαa+u
∥∥
Lp(a,b)

,

where q = p
p−1

> 1.

Then,

‖u‖L∞(a,b) = ‖Iαa+Dαa+u‖L∞(a,b) ≤
(b− a)α−

1
p(

αp
p−1
− 1

p−1

) p−1
p

Γ(α)

∥∥Dαa+u
∥∥
Lp(a,b)

, (6.11)

showing (6.9). �

Remark 6.13. In Theorem 6.12, by taking 1 < q <∞, we obtain

‖u‖Lq(a,b) ≤
(b− a)α−

1
p

+ 1
q(

αp
p−1
− 1

p−1

) p−1
p

Γ(α)

∥∥Dαa+u
∥∥
Lp(a,b)

. (6.12)

Theorem 6.14. Also, Theorem 6.12 holds for the Riemann-Liouville derivative.
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Proof. By Theorem 6.12, we have u(a) = 0 and by using Remark 6.4, we have Dαa+ =
Dα
a+. �

Let us also present the following result.

Theorem 6.15. Let Dαa+u ∈ Lp(a, b) with p > 1 and let β ∈ [0, 1) be such that

α ∈
(
β + 1

p
, 1
]
. Then for the Caputo fractional derivative Dβa+, we have

‖Dβa+u‖L∞(a,b) ≤
(b− a)α−β−

1
p

+ 1
q

(αq − βq − q + 1)
1
q Γ(α− β)

∥∥Dαa+u
∥∥
Lp(a,b)

, (6.13)

for all 1 < p ≤ q <∞, where 1
p

+ 1
q

= 1.

Proof. By using Definition 6.3 and Properties 6.5, 6.6 we introduce the function

Dβa+u(t) = I1−β
a+ u′(t) = Iα−βa+ I1−α

a+ u′(t) = Iα−βa+ Dαa+u(t). (6.14)

Using the Hölder inequality with 1
p

+ 1
q

= 1, we get

∣∣∣Iα−βa+ Dαa+u(t)
∣∣∣ ≤ 1

Γ(α− β)

t∫
a

∣∣(t− s)α−β−1Dαa+u(s)
∣∣ ds

≤ 1

Γ(α− β)

 t∫
a

(t− s)αq−βq−qds


1
q
 t∫

a

∣∣Dαa+u(s)
∣∣p ds


1
p

=
(t− a)α−β−1+ 1

q

(αq − βq − q + 1)
1
q Γ(α− β)

 t∫
a

∣∣Dαa+u(s)
∣∣p ds


1
p

=
(t− a)α−β−

1
p

(αq − βq − q + 1)
1
q Γ(α− β)

 t∫
a

∣∣Dαa+u(s)
∣∣p ds


1
p

≤ (b− a)α−β−
1
p

(αq − βq − q + 1)
1
q Γ(α− β)

∥∥Dαa+u
∥∥
Lp(a,b)

,

where by assumption α > β + 1
p
, we have αq − βq − q + 1 > 0. From this, we obtain

‖Dβa+u‖L∞(a,b) ≤
(b− a)α−β−

1
p

(αq − βq − q + 1)
1
q Γ(α− β)

∥∥Dαa+u
∥∥
Lp(a,b)

, (6.15)

showing (6.13). �

Remark 6.16. In (6.13), if β = 0, we obtain Sobolev type inequality.

Remark 6.17. In Theorem 6.15, by taking 1 < q <∞, we get

‖Dβa+u‖Lq(a,b) ≤
(b− a)α−β−

1
p

+ 1
q

(αq − βq − q + 1)
1
q Γ(α− β)

∥∥Dαa+u
∥∥
Lp(a,b)

. (6.16)
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6.2. Hardy type inequality for the Caputo fractional derivative. Let us show
Hardy inequality.

Theorem 6.18. Let a > 0, u(a) = 0 and Dαa+u ∈ Lp(a, b) with p > 1. Then for the

Dαa+ Caputo fractional derivative of order α ∈
(

1
p
, 1
]

we have the inequality

∥∥∥u
x

∥∥∥
Lp(a,b)

≤ a−1(b− a)α(
αp
p−1
− 1

p−1

) p−1
p

Γ(α)

∥∥Dαa+u
∥∥
Lp(a,b)

. (6.17)

Proof. From a < x < b we have 1
b
< 1

x
< 1

a
. By using Theorem 6.12, we calculate

(∫ b

a

|u(x)|p

xp
dx

) 1
p

=

(∫ b

a

x−p|u(x)|pdx
) 1

p

≤ a−1‖u‖Lp(a,b)

(6.9)

≤ a−1(b− a)α(
αp
p−1
− 1

p−1

) p−1
p

Γ(α)

∥∥Dαa+u
∥∥
Lp(a,b)

,

(6.18)

showing (6.17). �

Theorem 6.19. Also, Theorem 6.18 holds for the Riemann-Liouville derivative.

Proof. The proof is similar with Theorem 6.14. �

Let us give the weighted one-dimensional Hardy type inequality.

Theorem 6.20. Let a > 0, u ∈ Lp(a, b), u(a) = 0 and Dαa+u ∈ Lp(a, b) with p > 1.

Then for the Dαa+ Caputo fractional derivative of order α ∈
(

1
p
, 1
]

and γ ∈ R, there

exists C > 0 such that

∥∥∥ u

xγ+1

∥∥∥
Lp(a,b)

≤ a−|γ|−1b|γ|(b− a)α

(αq − q + 1)
1
q Γ(α)

∥∥∥∥Dαa+u

xγ

∥∥∥∥
Lp(a,b)

. (6.19)
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Proof. Let us divide the proof in two cases γ ≥ 0 and γ < 0. Firstly, let us prove the
case γ ≥ 0. From a > 0, we have b−γ−1 < x−γ−1 < a−γ−1, so that(∫ b

a

|u(x)|p

x(γ+1)p
dx

) 1
p

≤ a−γ−1

(∫ b

a

|u(x)|pdx
) 1

p

(6.9)

≤ a−γ−1(b− a)α(
αp
p−1
− 1

p−1

) p−1
p

Γ(α)

(∫ b

a

|Dαa+u|pdx
) 1

p

=
a−γ−1(b− a)α(

αp
p−1
− 1

p−1

) p−1
p

Γ(α)

(∫ b

a

xγp

xγp
|Dαa+u|pdx

) 1
p

≤ a−γ−1bγ(b− a)α(
αp
p−1
− 1

p−1

) p−1
p

Γ(α)

(∫ b

a

|Dαa+u|p

xγp
dx

) 1
p

=
a−γ−1bγ(b− a)α

(αq − q + 1)
1
q Γ(α)

∥∥∥∥Dαa+u

xγ

∥∥∥∥
Lp(a,b)

.

(6.20)

Let us show the case γ < 0,(∫ b

a

|u(x)|p

x(γ+1)p
dx

) 1
p

=

(∫ b

a

|u(x)|p

x(γp+p)
dx

) 1
p

≤ b−γ
(∫ b

a

|u(x)|p

xp
dx

) 1
p

(6.17)

≤ a−1b−γ(b− a)α(
αp
p−1
− 1

p−1

) p−1
p

Γ(α)

∥∥Dαa+u
∥∥
Lp(a,b)

=
a−1b−γ(b− a)α(
αp
p−1
− 1

p−1

) p−1
p

Γ(α)

(∫ b

a

|Dαa+u|pdx
) 1

p

=
a−1b−γ(b− a)α(
αp
p−1
− 1

p−1

) p−1
p

Γ(α)

(∫ b

a

xγp

xγp
|Dαa+u|pdx

) 1
p

≤ aγ−1b−γ(b− a)α(
αp
p−1
− 1

p−1

) p−1
p

Γ(α)

(∫ b

a

|Dαa+u|p

xγp
dx

) 1
p

=
aγ−1b−γ(b− a)α(
αp
p−1
− 1

p−1

) p−1
p

Γ(α)

∥∥∥∥Dαa+u

xγ

∥∥∥∥
Lp(a,b)

,

(6.21)

implying (6.19). �

Remark 6.21. Also, Theorem 6.20 holds for the Riemann-Liouville derivative.
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6.3. Gagliardo-Nirenberg type inequality for the Caputo fractional deriv-
ative. Now, we are on a way to establish the Gagliardo-Nirenberg inequality for
differential operators of the fractional order. We show that the Sobolev type in-
equality that is given by Theorem 6.15 implies a family of the Gagliardo–Nirenberg
inequalities.

Theorem 6.22. Assume that α ∈
(

1
q
, 1
]
, 1 ≤ p, q <∞. Then we have the following

Gagliardo-Nirenberg type inequality,

‖u‖Lγ(a,b) ≤ C‖Dαa+u‖sLq(a,b)‖u‖1−s
Lp(a,b), (6.22)

with
γs

q
+
γ(1− s)

p
= 1, (6.23)

where s ∈ [0, 1].

Proof. By using the Hölder inequality with γs
q

+ γ(1−s)
p

= 1, we have∫ b

a

|u(x)|γdx =

∫ b

a

|u(x)|γs|u(x)|γ(1−s)dx

≤
(∫ b

a

|u(x)|qdx
) γs

q
(∫ b

a

|u(x)|pdx
) γ(1−s)

p

(6.9)

≤ C‖Dαa+u‖
γs
Lq(a,b)‖u‖

γ(1−s)
Lp(a,b),

(6.24)

showing (6.22). �

Remark 6.23. Also, Theorem 6.22 holds for the Riemann-Liouville derivative.

Let us consider the space Ḣα
+(a, b) with α ∈

(
1
2
, 1
]

in the following form:

Ḣα
+(a, b) := {u ∈ L2(a, b), Dαa+u ∈ L2(a, b), u(a) = 0}.

A special case of Theorem 6.22 important for our further analysis is that of q = 2
and α = 1, in which case we obtain a more classical Gagliardo-Nirenberg inequality:

Corollary 6.24. We have the following Gagliardo-Nirenberg type inequality

‖u‖Lγ(a,b) ≤ C‖u‖s
Ḣ1

+(a,b)
‖u‖1−s

Lp(a,b), (6.25)

for s ∈ [0, 1].

We also record another more general special case of Theorem 6.22 with q = 2:

Corollary 6.25. Let α ∈
(

1
2
, 1
]
. We have the following Gagliardo-Nirenberg type

inequality,

‖u‖Lγ(a,b) . ‖u‖sḢα
+(a,b)
‖u‖1−s

Lp(a,b), (6.26)

for 1
γ

= s
2

+ 1−s
p

, where s ∈ [0, 1].
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6.4. Caffarrelli-Kohn-Nirenberg type inequality for the Caputo fractional
derivative. Then let us now show a fractional Caffarrelli-Kohn-Nirenberg type in-
equality.

Theorem 6.26. Assume that a > 0, α ∈
(

1− 1
q
, 1
)

, 1 < p, q < ∞, 0 < r < ∞,
and p + q ≥ r. Let δ ∈ [0, 1] ∩ [ r−q

r
, p
r
] and c, d, e ∈ R with the δ

p
+ 1−δ

q
= 1

r
,

c = δ(d− 1) + e(1− δ) and u(a) = 0. If 1 + (d− 1)p > 0 then we have

‖xcu‖Lr(a,b) ≤ C‖xdDαa+u‖δLp(a,b)‖xeu‖1−δ
Lq(a,b). (6.27)

Proof. Case δ = 0.
If δ = 0, then c = e and q = r. Then (6.27) is the inequality

‖xcu‖Lr(a,b) ≤ ‖xcu‖Lr(a,b).

Case δ = 1.
If δ = 1, then we have c = d−1 and p = r. Also, we have 1+cp = 1+(d−1)p > 0.

Then by using weighted fractional Hardy inequality (Theorem 6.20), we obtain

‖xcu‖Lp(a,b) ≤ C
∥∥xc+1Dαa+u

∥∥
Lp(a,b)

= C
∥∥xdDαa+u

∥∥
Lp(a,b)

.
(6.28)

Case δ ∈ [0, 1] ∩ [ r−q
r
, p
r
].

By assumption c = δ(d − 1) + e(1 − δ) and by using Hölder’s inequality with
δ
p

+ 1−δ
q

= 1
r
, we calculate

‖xcu‖Lr(a,b) =

(∫ b

a

xcr|u(x)|rdx
) 1

r

=

(∫ b

a

|u(x)|δr

xδr(1−d)

|u(x)|(1−δ)r

x−er(1−δ)
dx

) 1
r

≤
∥∥∥ u

x1−d

∥∥∥δ
Lp(a,b)

∥∥∥ u

x−e

∥∥∥1−δ

Lq(a,b)
.

(6.29)

By using weighted fractional Hardy inequality (Theorem 6.20) with 1 + (d− 1)p > 0,
we obtain

‖xcu‖Lr(a,b) ≤
∥∥∥ u

x1−d

∥∥∥δ
Lp(a,b)

∥∥∥ u

x−e

∥∥∥1−δ

Lq(a,b)

≤ C‖xdDαa+u‖δLp(a,b)‖xeu‖1−δ
Lq(a,b),

(6.30)

completing the proof. �

Remark 6.27. Also, Theorem 6.26 holds for the Riemann-Liouville derivative.

6.5. Sequential Derivation Case. In this subsection we collect results for the se-
quential derivatives. Indeed, it is important due to the non–commutativity and the
absence of the semi–group property of fractional differential operators.
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6.6. Fractional Poincaré–Sobolev type inequality for sequential fractional
derivative.

Theorem 6.28. Let Dβa+u(a) = 0, Dαa+D
β
a+u ∈ Lp(a, b) with α ∈

(
1
q
, 1
)

and β ∈
(0, 1). Then the following inequality is true

‖Dβa+u‖L∞(a,b) ≤
(b− a)α−

1
p

(αq − q + 1)
1
q Γ(α)

∥∥∥Dαa+D
β
a+u
∥∥∥
Lp(a,b)

(6.31)

with 1
p

+ 1
q

= 1.

Proof. We consider the function

Dβa+u(t) = Iαa+Dαa+D
β
a+u(t). (6.32)

Using the Hölder inequality∣∣∣Iαa+Dαa+D
β
a+u(t)

∣∣∣ ≤ 1

Γ(α)

t∫
a

∣∣∣(t− s)α−1Dαa+D
β
a+u(s)

∣∣∣ ds
≤ 1

Γ(α)

 t∫
a

(t− s)αq−qds


1
q
 t∫

a

∣∣∣Dαa+D
β
a+u(s)

∣∣∣p ds


1
p

=
(t− a)α−1+ 1

q

(αq − q + 1)
1
q Γ(α)

 t∫
a

∣∣∣Dαa+D
β
a+u(s)

∣∣∣p ds


1
p

≤ (b− a)α−1+ 1
q

(αq − q + 1)
1
q Γ(α)

∥∥∥Dαa+D
β
a+u
∥∥∥
Lp(a,b)

.

Then we have

‖Dβa+u‖L∞(a,b) ≤
(b− a)α−

1
p

(αq − q + 1)
1
q Γ(α)

∥∥∥Dαa+D
β
a+u
∥∥∥
Lp(a,b)

,

completing proof. �

Remark 6.29. In Theorem 6.28, if 1 < θ <∞, then we have

‖Dβa+u‖Lθ(a,b) ≤
(b− a)α−

1
p

+ 1
θ

(αq − q + 1)
1
q Γ(α)

∥∥∥Dαa+D
β
a+u
∥∥∥
Lp(a,b)

.

6.7. Fractional Hardy type inequality for the sequential fractional deriva-
tive. Now we show the following sequential fractional Hardy inequality.

Theorem 6.30. Let a > 0, γ ∈ R and Dβa+u(a) = 0 and Dαa+D
β
a+u ∈ Lp(a, b) with

α ∈
(

1
q
, 1
)
. Then the following inequality is true∥∥∥∥∥Dβa+u

x

∥∥∥∥∥
Lp(a,b)

≤ C
∥∥∥Dαa+D

β
a+u
∥∥∥
Lp(a,b)

(6.33)

with 1
p

+ 1
q

= 1.
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Proof. From a < x < b we have 1
b
< 1

x
< 1

a
. By using Theorem 6.28, we calculate(∫ b

a

|Dβa+u(x)|p

xp
dx

) 1
p

=

(∫ b

a

x−p|Dβa+u(x)|pdx
) 1

p

≤ a−1‖Dβa+u‖Lp(a,b)

(6.31)

≤ a−1(b− a)α

(αq − q + 1)
1
q Γ(α)

∥∥∥Dαa+D
β
a+u
∥∥∥
Lp(a,b)

,

(6.34)

showing (6.33). �

6.8. Fractional Gagliardo-Nirenberg type inequality for the sequential frac-
tional derivative. In the same way as Theorem 6.22 is proved, we can prove the
following statement.

Theorem 6.31. Assume that 1 ≤ p, q < ∞, and let α ∈ (0, 1) be such that β ∈(
1
q
, 1
)

. Suppose that Dαa+D
β
a+u ∈ Lq(a, b) and Dαau ∈ Lp(a, b). Then we have the

following Gagliardo-Nirenberg type inequality,∫ b

a

|Dαa+u(x)|γdx .
(∫ b

a

|Dβa+Dαa+u(x)|qdx
) sγ

q
(∫ b

a

|Dαa+u(x)|pdx
) (1−s)γ

p

, (6.35)

with
sγ

q
+

(1− s)γ
p

= 1, (6.36)

where s ∈ [0, 1].

Proof. Let us calculate the following integral:∫ b

a

|Dαa+u(x)|γdx =

∫ b

a

|Dαa+u(x)|sγ|Dαa+u(x)|(1−s)γdx

≤
(∫ b

a

|Dαa+u(x)|qdx
) sγ

q
(∫ b

a

|Dαa+u(x)|pdx
) (1−s)γ

p

,

(6.37)

with
sγ

q
+

(1− s)γ
p

= 1. (6.38)

Then by using Theorem 6.28, we obtain∫ b

a

|Dαa+u(x)|γdx ≤
(∫ b

a

|Dαa+u(x)|qdx
) sγ

q
(∫ b

a

|Dαa+u(x)|pdx
) (1−s)γ

p

(6.33)

≤ C

(∫ b

a

|Dβa+Dαa+u(x)|qdx
) sγ

q
(∫ b

a

|Dαa+u(x)|pdx
) (1−s)γ

p

.

(6.39)

The theorem is proved. �
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6.9. Poincaré–Sobolev type inequality for the Hadamard fractional deriv-
ative. In this subsection we show fractional order Poincaré–Sobolev type inequality.

Theorem 6.32. Let a > 0, u ∈ Lp(a, b), u(a) = 0, Dα
a+u ∈ Lp1

x

(a, b) and p > 1.

Then for the Dα
a+ Hadamard fractional derivative of order α ∈

(
1
p
, 1
]

we have the

inequality

‖u‖L∞(a,b) ≤
∣∣log b

a

∣∣α− 1
p(

αp
p−1
− 1

p−1

) p−1
p

Γ(α)

∥∥Dα
a+u
∥∥
Lp1
x

(a,b)
. (6.40)

Proof. Let u ∈ Lp1
x

(a, b), u(a) = 0, Dα
a+u ∈ Lp(a, b) and consider the function

u(t) = Iαa+D
α
a+u(t). (6.41)

Using the Hölder inequality with 1
p

+ 1
q

= 1, we obtain

∣∣Iαa+D
α
a+u(t)

∣∣ ≤ 1

Γ(α)

t∫
a

∣∣∣∣∣
(

log
t

s

)α−1

Dα
a+u(s)

∣∣∣∣∣ ds

s
1
p

+ 1
q

≤ 1

Γ(α)

 t∫
a

∣∣∣∣log
t

s

∣∣∣∣αq−q dss


1
q
 t∫

a

∣∣Dα
a+u(s)

∣∣p ds
s


1
p

α> 1
p

=

∣∣log t
a

∣∣α−1+ 1
q

(αq − q + 1)
1
q Γ(α)

 t∫
a

∣∣Dα
a+u(s)

∣∣p ds
s


1
p

≤
∣∣log b

a

∣∣α−1+ 1
q

(αq − q + 1)
1
q Γ(α)

∥∥Dα
a+u
∥∥
Lp1
x

(a,b)

=

∣∣log b
a

∣∣α− 1
p

(αq − q + 1)
1
q Γ(α)

∥∥Dα
a+u
∥∥
Lp1
x

(a,b)

=

∣∣log b
a

∣∣α− 1
p(

αp
p−1
− 1

p−1

) p−1
p

Γ(α)

∥∥Dα
a+u
∥∥
Lp1
x

(a,b)
,

where q = p
p−1

> 1, showing (6.40).
�

Remark 6.33. In Theorem 6.32, by taking 1 < θ <∞, we have

‖u‖Lθ(a,b) ≤
(b− a)

1
θ

∣∣log b
a

∣∣α− 1
p(

αp
p−1
− 1

p−1

) p−1
p

Γ(α)

∥∥Dα
a+u
∥∥
Lp1
x

(a,b)
. (6.42)
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6.10. Hardy type inequality for the Hadamard fractional derivative. Let us
show Hardy inequality.

Theorem 6.34. Let a > 0, u(a) = 0 and Dα
a+u ∈ L

p
1
x

(a, b) with p > 1. Then for the

Dα
a+ Hadamard fractional derivative of order α ∈

(
1
p
, 1
]

we have the inequality

∥∥∥u
x

∥∥∥
Lp(a,b)

≤
a−1(b− a)

1
p

∣∣log b
a

∣∣α− 1
p(

αp
p−1
− 1

p−1

) p−1
p

Γ(α)

∥∥Dα
a+u
∥∥
Lp1
x

(a,b)
. (6.43)

Proof. From a < x < b we have 1
b
< 1

x
< 1

a
. By using Theorem 6.32, we calculate

(∫ b

a

|u(x)|p

xp
dx

) 1
p

=

(∫ b

a

x−p|u(x)|pdx
) 1

p

≤ a−1‖u‖Lp(a,b)

(6.40)

≤
a−1(b− a)

1
p

∣∣log b
a

∣∣α− 1
p(

αp
p−1
− 1

p−1

) p−1
p

Γ(α)

∥∥Dα
a+u
∥∥
Lp1
x

(a,b)
,

(6.44)

showing (6.43). �

Let us show weighted Hardy inequality with Hadamard derivaive.

Theorem 6.35. Let a > 0, u(a) = 0 and Dα
a+u ∈ Lp1

x

(a, b) with p > 1. Then for

the Dα
a+ Hadamard fractional derivative of order α ∈

(
1
p
, 1
]

and γ ∈ R, we have

inequality

∥∥∥ u

xγ+1

∥∥∥
Lp(a,b)

≤ C

∥∥∥∥Dα
a+u

xγ

∥∥∥∥
Lp1
x

(a,b)

. (6.45)
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Proof. Let us divide the proof in two cases γ ≥ 0 and γ < 0. Firstly, let us prove the
case γ ≥ 0. From a > 0, we have b−γ−1 < x−γ−1 < a−γ−1

(∫ b

a

|u(x)|p

x(γ+1)p
dx

) 1
p

≤ a−γ−1

(∫ b

a

|u(x)|pdx
) 1

p

(6.40)

≤
a−γ−1(b− a)

1
p

∣∣log b
a

∣∣α− 1
p(

αp
p−1
− 1

p−1

) p−1
p

Γ(α)

(∫ b

a

|Dα
a+u|p

dx

x

) 1
p

=
a−γ−1(b− a)

1
p

∣∣log b
a

∣∣α− 1
p(

αp
p−1
− 1

p−1

) p−1
p

Γ(α)

(∫ b

a

xγp

xγp
|Dα

a+u|p
dx

x

) 1
p

≤
a−γ−1(b− a)

1
p bγ
∣∣log b

a

∣∣α− 1
p(

αp
p−1
− 1

p−1

) p−1
p

Γ(α)

(∫ b

a

|Dα
a+u|p

xγp
dx

x

) 1
p

=
a−γ−1(b− a)

1
p bγ
∣∣log b

a

∣∣α− 1
p(

αp
p−1
− 1

p−1

) p−1
p

Γ(α)

∥∥∥∥Dα
a+u

xγ

∥∥∥∥
Lp1
x

(a,b)

.

(6.46)

Let us show the case γ < 0,(∫ b

a

|u(x)|p

x(γ+1)p
dx

) 1
p

=

(∫ b

a

|u(x)|p

x(γp+p)
dx

) 1
p

≤ b−γ
(∫ b

a

|u(x)|p

xp
dx

) 1
p

(6.43)

≤
b−γa−1(b− a)

1
p

∣∣log b
a

∣∣α− 1
p(

αp
p−1
− 1

p−1

) p−1
p

Γ(α)

∥∥Dα
a+u
∥∥
Lp1
x

(a,b)

=
b−γa−1(b− a)

1
p

∣∣log b
a

∣∣α− 1
p(

αp
p−1
− 1

p−1

) p−1
p

Γ(α)

(∫ b

a

|Dα
a+u|p

dx

x

) 1
p

=
b−γa−1(b− a)

1
p

∣∣log b
a

∣∣α− 1
p(

αp
p−1
− 1

p−1

) p−1
p

Γ(α)

(∫ b

a

xγp

xγp
|Dα

a+u|p
dx

x

) 1
p

≤
b−γaγ−1(b− a)

1
p

∣∣log b
a

∣∣α− 1
p(

αp
p−1
− 1

p−1

) p−1
p

Γ(α)

(∫ b

a

|Dα
a+u|p

xγp
dx

x

) 1
p

=
b−γaγ−1(b− a)

1
p

∣∣log b
a

∣∣α− 1
p(

αp
p−1
− 1

p−1

) p−1
p

Γ(α)

∥∥∥∥Dα
a+u

xγ

∥∥∥∥
Lp1
x

(a,b)

,

(6.47)
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showing (6.45). �

6.11. Fractional Gagliardo-Nirenberg type inequality with the Hadamard
derivative.

Theorem 6.36. Assume that α ∈
(

1
q
, 1
]
, 1 ≤ p, q <∞. Then we have the following

Gagliardo-Nirenberg type inequality,

‖u‖Lγ(a,b) ≤ C‖Dα
a+u‖sLq1

x
(a,b)‖u‖

1−s
Lp(a,b), (6.48)

with
γs

q
+
γ(1− s)

p
= 1, (6.49)

where s ∈ [0, 1].

Proof. By using the Hölder inequality γs
q

+ γ(1−s)
p

= 1, we have∫ b

a

|u(x)|γdx =

∫ b

a

|u(x)|γs|u|γ(1−s)dx

≤
(∫ b

a

|u(x)|qdx
) γs

q
(∫ b

a

|u(x)|pdx
) γ(1−s)

p

(6.40)

≤ C‖Dα
a+u‖

γs
Lq1
x

(a,b)
‖u‖γ(1−s)

Lp(a,b),

(6.50)

completing proof. �

6.12. Fractional Cafarrelli-Kohn-Nirenberg type inequality with Hadamard
derivative. Then let us show fractional Cafarrelli-Kohn-Nirenberg type inequality.

Theorem 6.37. Assume that a > 0, α ∈
(

1− 1
q
, 1
)

, 1 < p, q < ∞, 0 < r < ∞
such that p + q ≥ r. Let δ ∈ [0, 1] ∩ [ r−q

r
, p
r
] and c, d, e ∈ R with the δ

p
+ 1−δ

q
= 1

r
,

c = δ(d− 1) + e(1− δ) and u(a) = 0. If 1 + (d− 1)p > 0 then we have

‖xcu‖Lr(a,b) ≤ C
∥∥xdDα

a+u
∥∥δ
Lp1
x

(a,b)
‖xeu‖1−δ

Lq(a,b). (6.51)

Proof. Case δ = 0.
If δ = 0, then c = e and q = r. Then (6.27) is the inequality

‖xcu‖Lr(a,b) ≤ ‖xcu‖Lr(a,b).
Case δ = 1.
If δ = 1, then we have c = d−1 and p = r. Also, we have 1+cp = 1+(d−1)p > 0.

Then by using weighted fractional Hardy inequality (Theorem 6.35) we obtain

‖xcu‖Lp(a,b) ≤ C
∥∥xc+1Dα

a+u
∥∥
Lp1
x

(a,b)

= C
∥∥xdDα

a+u
∥∥
Lp1
x

(a,b)
.

(6.52)

Case δ ∈ [0, 1] ∩ [ r−q
r
, p
r
].
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By assumption c = δ(d − 1) + e(1 − δ) and by using Hölder’s inequality with
δ
p

+ 1−δ
q

= 1
r
, we calculate

‖xcu‖Lr(a,b) =

(∫ b

a

xcr|u(x)|rdx
) 1

r

=

(∫ b

a

|u(x)|δr

xδr(1−d)

|u(x)|(1−δ)r

x−er(1−δ)
dx

) 1
r

≤
∥∥∥ u

x1−d

∥∥∥δ
Lp(a,b)

∥∥∥ u

x−e

∥∥∥1−δ

Lq(a,b)
.

(6.53)

By using weighted fractional Hardy inequality (Theorem 6.35) with 1 + (d− 1)p > 0
we obtain

‖xcu‖Lr(a,b) ≤
∥∥∥ u

x1−d

∥∥∥δ
Lp(a,b)

∥∥∥ u

x−e

∥∥∥1−δ

Lq(a,b)

≤ C‖xdDα
a+u‖δLp1

x
(a,b)‖x

eu‖1−δ
Lq(a,b),

(6.54)

showing (6.51). �

6.13. Lyapunov-type inequality. Assume Ω ⊂ RN , N ≥ 1, be an open bounded
domain, −∞ < a < b < +∞ and q(x) be real-valued, continuous function. Let us
consider the following fractional differential equation:{

Dαa+,xD
β
a+,xu(x, y)− (−∆y)

s
pu(x, y) + q(x)u(x, y) = 0, in (a, b)× Ω,

u(a, y) = u(b, y) = 0, y ∈ RN \ Ω,
(6.55)

where Dµa+,x is the Caputo fractional derivative in the variable x and (−∆y)
s
p is the

fractional p-Laplacian in the variable y with s ∈ (0, 1) and 1 < p <∞.
By [125], we can choose the first eigenfunction of{

(−∆y)
s
pϕ1(y) = λ1(Ω)ϕ1(y), y ∈ Ω,

ϕ1(y) = 0, y ∈ RN \ Ω,
(6.56)

corresponding to be positive and whose eigenvalue simple and positive, λ1(Ω) > 0.
In this section we obtain a Lyapunov-type inequality for (6.55).

Theorem 6.38. Assume that 0 < α, β ≤ 1 be such that 1 < α + β ≤ 2, s ∈ (0, 1),
1 < p <∞ and q(x) ∈ C([a, b]). Then for (6.55), we have

∫ b

a

|q(x)− λ1(Ω)|dx ≥ Γ(α + β)(α + 2β − 1)α+2β−1

(b− a)α+β−1(α + β − 1)α+β−1ββ
, (6.57)

where λ1(Ω) is the first eigenvalue of (6.56).
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Proof. By multiplying (6.55) with ϕ1(y) and integrating over Ω, we get∫
Ω

Dαa+,xD
β
a+,xu(x, y)ϕ1(y)dy −

∫
Ω

((−∆y)
s
pu(x, y))ϕ1(y)dy

+ q(x)

∫
Ω

u(x, y)ϕ1(y)dy

= Dαa+,xD
β
a+,x

∫
Ω

u(x, y)ϕ1(y)dy

−
∫

Ω

((−∆y)
s
pu(x, y))ϕ1(y)dy

+ q(x)

∫
Ω

u(x, y)ϕ1(y)dy

= Dαa+,xD
β
a+,x

∫
Ω

u(x, y)ϕ1(y)dy

−
∫

Ω

((−∆y)
s
pϕ1(y))u(x, y)dy

+ q(x)

∫
Ω

u(x, y)ϕ1(y)dy

= Dαa+,xD
β
a+,x

∫
Ω

u(x, y)ϕ1(y)dy

− λ1(Ω)

∫
Ω

u(x, y)ϕ1(y)dy

+

∫
Ω

u(x, y)ϕ1(y)dy

= Dαa+,xD
β
a+,xv(x) + q1(x)v(x) = 0,

where v(x) =
∫

Ω
u(x, y)ϕ1(y)dy, q1(x) = q(x) − λ1(Ω), from boundary condition

(6.55), we have

v(a) = 0, v(b) = 0.

Finally, we get {
Dαa+,xD

β
a+,xv(x) + q1(x)v(x) = 0, x ∈ (a, b),

v(a) = 0, v(b) = 0.
(6.58)

By [126], for the (6.58), we get∫ b

a

|q1(x)|dx =

∫ b

a

|q(x)− λ1(Ω)|dx

≥ Γ(α + β)(α + 2β − 1)α+2β−1

(b− a)α+β−1(α + β − 1)α+β−1ββ
,

(6.59)

completing the proof. �

Corollary 6.39. By choosing α = β = 1, s = 1 and p = 2, we have Theorem 2.2 in
[121] with γ = 0.
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Let us consider the following eigenvalue problem in cylindrical domain:
Dαa+,xD

β
a+,xu(x, y)− (−∆y)

su(x, y) + νu(x, y) = 0, in (a, b)× Ω,

u(a, y) = u(b, y) = 0, ∀y ∈ Ω,

u(x, y) = 0, y ∈ RN \ Ω,

(6.60)

where (−∆y)
s is the fractional Laplacian. Denote that | · | is the Lebesgue measure.

Then, we have the following two sides estimate of the first eigenvalue of (6.60) in the
circular cylinder.

Theorem 6.40. Let 0 < α, β ≤ 1 be such that 1 < α + β ≤ 2, s ∈ (0, 1) and
1 < p <∞. Then we have,

(b− a)|ν|+ (b− a)λ1(Ω) ≥ (b− a)|ν|+ (b− a)λ1(B)

>
Γ(α + β)(α + 2β − 1)α+2β−1

(b− a)α+β−1(α + β − 1)α+β−1ββ
,

(6.61)

where λ1(B) is the first eigenvalue of the eigenvalue problem (6.60) in a ball B with
|Ω| = |B|.

Proof. By using previous theorem, assume that B be a ball and q(x) = ν by using
Theorem A.1 in [1], we have

(b− a)|ν|+ (b− a)λ1(Ω) ≥ (b− a)|ν|+ (b− a)λ1(B)

≥
∫ b

a

|ν − λ1(B)|dx

≥ Γ(α + β)(α + 2β − 1)α+2β−1

(b− a)α+β−1(α + β − 1)α+β−1ββ
.

(6.62)

�

Theorem 6.41. Assume that 0 < α, β ≤ 1 be such that 1 < α + β ≤ 2, s ∈ (0, 1)
and 1 < p <∞. Then we have,

(b− a)|ν|+ (b− a)λ1(Ω) ≥ (b− a)|ν|+ (b− a)λ1(B)

>
Γ(α + β)(α + 2β − 1)α+2β−1

(b− a)α+β−1(α + β − 1)α+β−1ββ
,

(6.63)

where λ1(B) is the first eigenvalue of the eigenvalue problem (6.60) in ball B with
|Ω| = |B|.

Let us consider the following fractional differential equation by the variable x:
Lxu(x, y)− (−∆y)

su(x, y) + q(x)u(x, y) = 0, (x, y) ∈ (a, b)× Ω,

u(a, y) = u(b, y) = 0, ∀y ∈ Ω,

u(x, y) = 0, y ∈ RN \ Ω,

(6.64)

where

Lx :=
Dα
b−,xD

α
a+,x +Dα

a+,xD
α
b−,x

2
,

1

2
< α < 1.

Denote that the following functional spaces ACα,2
a ([a, b]) and ACα,2

b ([a, b]).
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Definition 6.42. For all α ∈ (0, 1) and every 1 ≤ p <∞, we denote by ACα,2
a ([a, b])

the functional space defined by

ACα,2
a ([a, b]) := {f : f ∈ L1([a, b]), Dα

a+,xf ∈ L2([a, b])}. (6.65)

ACα,2
b ([a, b]) := {f : f ∈ L1([a, b]), Dα

b−,xf ∈ L2([a, b])}. (6.66)

Then, we have the following Lyapunov-type inequality:

Theorem 6.43. Suppose that 1
2
< α < 1, s ∈ (0, 1), 1 < p < ∞ and q ∈ C([a, b]).

Suppose that
∫

Ω
u(x, y)ϕ1(y)dy ∈ ACα,2

a ([a, b]) ∩ ACα,2
b ([a, b]) ∩ C([a, b]). Then for

(6.64), we get ∫ b

a

|q(x)− λ1(Ω)|dx ≥ Γ2(α)

(
2

b− a

)2α−1

(2α− 1), (6.67)

where λ1(Ω) is the first eigenvalue of (6.56).

Proof. The proof is similar to that of Theorem 6.38. Shortly, we have{
Lxv(x) + q1(x)v(x) = 0, x ∈ (a, b),

v(a) = 0, v(b) = 0,
(6.68)

where v(x) =
∫

Ω
u(x, y)ϕ1(y)dy and q1(x) = q(x) − λ1(Ω). By assumptions v(x) ∈

ACα,2
a ([a, b]) ∩ ACα,2

b ([a, b]) ∩ C([a, b]) and from [127], we get∫ b

a

|q(x)− λ1(Ω)|dx ≥ Γ2(α)

(
2

b− a

)2α−1

(2α− 1). (6.69)

Theorem 6.43 is complete. �

6.14. Hartman-Wintner-type inequality. In this section, we show Hartman-Wintner
type inequality for problem (6.55).

Theorem 6.44. Assume that 0 < α, β ≤ 1 be such that 1 < α + β ≤ 2, s ∈ (0, 1),
1 < p <∞ and q(x) ∈ C([a, b]). Assume that the fractional boundary value problem
(6.55) has a nontrivial continuous solution. Then, we have

b∫
a

(b− s)α+β−1(s− a)β[q(x)− λ1(Ω)]+ds > Γ(α + β)(b− a)β, (6.70)

where [q(x)− λ1(Ω)]+ = max{q(x)− λ1(Ω), 0}.

Proof. By multiplying (6.55) with ϕ1(y) and integrating over Ω, for the function
v(x) =

∫
Ω
u(x, y)ϕ1(y)dy we have problem (6.58). Problem (6.58) is equivalent to the

integral equation (see. [126])

v(x) =

b∫
a

G(x, s)q1(s)v(s)ds,
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where

G(x, s) =
1

Γ(α + β)


(b−s)α+β−1(x−a)β

(b−a)β
− (x− s)α+β−1, a ≤ s ≤ x ≤ b,

(b−s)α+β−1(x−a)β

(b−a)β
, a ≤ x ≤ s ≤ b,

(6.71)

G(x, s) ≤ G(s, s), for x, s ∈ [a, b]. (6.72)

By using last fact with (6.72) for any a ≤ x ≤ b, we get

|v(x)| ≤
b∫

a

|G(x, s)||q1(s)||v(s)|ds

≤
b∫

a

G(s, s)|q1(s)||v(s)|ds

≤ (b− a)−β

Γ(α + β)

b∫
a

(b− s)α+β−1(s− a)βq+
1 (s)|v(s)|ds.

Theorem 6.70 is proved. �

Corollary 6.45. By choosing α = β = 1 and s = 1, p = 2 in (6.70), we have the
classical Hartman-Wintner inequality∫ b

a

(b− s)(s− a)q+
1 (s) > b− a. (6.73)

6.15. De La Vallée Poussin-type inequality. Let us consider in (a, b) × Ω the
following fractional differential Dirichlet problem:

∂2

∂x2
u(x, y)− (−∆y)

su(x, y) + f(x)Dαa+,xu(x, y) + q(x)u(x, y) = 0,

u(a, y) = u(b, y) = 0, ∀y ∈ Ω,

u(x, y) = 0, y ∈ RN \ Ω,

(6.74)

where α ∈ (0, 1]. Then, we show a de La Vallée Poussin-type inequality for (6.74).

Theorem 6.46. Assume that α ∈ (0, 1]. Then, for (6.74), we have De La Vallée
Poussin-type inequality in the following form:

1 < M1(b− a)2−α +M2
(b− a)2

Γ(2− α)
,

where M1 = maxa≤x≤b |f(x)|, M2 = maxa≤x≤b |q(x) − λ1(Ω)| and λ1(Ω) is the first
eigenvalue of the (6.56).

Proof. Similarly to Theorem 6.46, we get

v′′(x) + f(x)Dαa+,xv(x) + q1(x)v(x) = 0, (6.75)

with

v(a) = v(b) = 0,
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where

v(x) =

∫
Ω

u(x, y)ϕ1(y)dy

and
q1(x) = q(x)− λ1(Ω).

From [120, Theorem 3.1], we have

b− a <max

{∫ b

a

(s− a)2−α

Γ(2− α)
|f(s)|ds,

∫ b

a

(s− a)1−α

Γ(2− α)
(b− s)|f(s)|ds

}
+

∫ b

a

(s− a)(b− s)|q(s)− λ1(Ω)|ds

≤M1(b− a)3−α +M2(b− a)3,

(6.76)

where M1 = maxa≤x≤b |f(x)|, M2 = maxa≤x≤b |q(x)− λ1(Ω)|.
Theorem 6.46 is complete. �

Corollary 6.47. By choosing α = 1, we get Theorem 2.2 in [122].

Let us consider in (a, b) × Ω the following fractional differential equation with
Riemann-Liouville derivative and 1 < α ≤ 2 and 0 < β ≤ 1:

Dα
a+,xu(x, y)− (−∆y)

su(x, y) + f(x)Dβ
a+,xu(x, y) + q(x)u(x, y) = 0,

u(a, y) = u(b, y) = 0, ∀y ∈ Ω,

u(x, y) = 0, y ∈ RN \ Ω,

(6.77)

Then let us present de La Vallée Poussin-type inequality for (6.77),

Theorem 6.48. Assume that α − β ≥ 1 with 1 < α ≤ 2 and 0 < β ≤ 1. Then, we
have

Γ(α− β) ≤ C1M1 + C2M2, (6.78)

where M1 = max
a≤x≤b

|f(x)|, M2 = max
a≤x≤b

|q(x)− λ1(Ω)|,

C1 = (b− a)α−β, (6.79)

and

C2 =
(b− a)α

Γ(1 + β)
. (6.80)

Proof. Similarly to Theorem 6.46, we get

Dα
a+v(x) + f(x)Dβ

a+v(x) + q1(x)v(x) = 0, (6.81)

with
v(a) = v(b) = 0,

where

v(x) =

∫
Ω

u(x, y)ϕ1(y)dy

and
q1(x) = q(x)− λ1(Ω).

By using [120, Theorem 3.11], we have

Γ(α− β) ≤ C ′1M1 + C ′2M2,
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where

C ′1 = max

{∫ b

a

F1(s)ds,

∫ b

a

(s− a)α−β−1(b− s)α−1

(b− a)α−1
ds

}
, (6.82)

and

C ′2 = max

{∫ b

a

F2(s)ds,

∫ b

a

(s− a)α−β−1(b− s)α−1

(b− a)α−1

(s− a)β

Γ(β + 1)
ds

}
, (6.83)

where

F1(s) = max

{
(s− a)α−β−1(b− s)α−1

(b− a)α−1
: α− β − 1 > 0, (b− s)α−β−1 − (b− s)α−1

(b− a)β

}
and

F2(s) = F1(s)
(s− a)β

Γ(β + 1)
.

Hence, we get

Γ(α− β) ≤ C ′1M1 + C ′2M2

≤ (b− a)α−βM1 +
(b− a)α

Γ(1 + β)
M2.

�

Corollary 6.49. By choosing α = 2 and β = 1 in Theorem 6.48, we get Theorem
2.2 in [122].

Corollary 6.50. By choosing α = 2 in Theorem 6.48, we get Theorem 6.46.

6.16. Lyapunov-type inequality for a fractional differential system. In this
section we present Lyapunov-type inequality for fractional differential system. Let us
consider in (a, b)× Ω the following fractional differential systems:{

uxx(x, y)− (−∆y)
sv(x, y) + f(x)v(x, y) = 0,

vxx(x, y)− (−∆y)
su(x, y) + g(x)u(x, y) = 0,

(6.84)

with homogeneous Dirichlet problem

u(a, y) = u(b, y) = v(a, y) = v(b, y) = 0, y ∈ Ω,

and

u(x, y) = v(x, y) = 0, y ∈ RN \ Ω.

Let us show one of the main result of this section:

Theorem 6.51. Assume that that f, g ≥ 0 and f, g ∈ L1([a, b]). If (6.84) has not
nontrivial solution, then we have

4 ≤ (b− a)

(∫ b

a

|f(x)− λ1(Ω)|dx
) 1

2
(∫ b

a

|g(x)− λ1(Ω)|dx
) 1

2

. (6.85)
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Proof. Suppose that

U(x) =

∫
Ω

u(x, y)ϕ1(y)dy,

and

V (x) =

∫
Ω

v(x, y)ϕ1(y)dy.

Similarly with the single equation case, we have{
U ′′(x)− f1(x)V (x, y) = 0,

V ′′(x)− g1(x)U(x, y) = 0,
(6.86)

with
U(a) = U(b) = 0,

V (a) = V (b) = 0,

f1(x) = f(x)− λ1(Ω)

and
g1(x) = g(x)− λ1(Ω).

From [70], we have

4 ≤ (b− a)

(∫ b

a

|f1(x)|dx
) 1

2
(∫ b

a

|g1(x)|dx
) 1

2

.

Theorem 6.51 is proved. �

Let us consider in (a, b)× Ω the following system:{
Lαxu(x, y)− (−∆y)

sv(x, y) + f(x)v(x, y) = 0,

Lβxv(x, y)− (−∆y)
su(x, y) + g(x)u(x, y) = 0,

(6.87)

with a homogeneous Dirichlet boundary condition

u(a, y) = u(b, y) = v(a, y) = v(b, y) = 0, y ∈ Ω,

and
u(x, y) = v(x, y) = 0, y ∈ RN \ Ω,

where

Lαx :=
Dα
b−,xD

α
a+,x +Dα

a+,xD
α
b−,x

2
,

1

2
< α < 1,

and

Lβx :=
Dβ
b−,xD

β
a+,x +Dβ

a+,xD
β
b−,x

2
,

1

2
< β < 1.

Theorem 6.52. Suppose that 1
2
< α < 1, 1

2
< β < 1 and f, g ∈ L1([a, b]). Let u, v

be a nontrivial solution of (6.87), then we have(
2

b− a

)α+β−1

(2α− 1)
1
2 (2β − 1)

1
2 Γ(α)Γ(β)

≤
(∫ b

a

|f(x)− λ1(Ω)|dx
) 1

2
(∫ b

a

|g(x)− λ1(Ω)|dx
) 1

2

. (6.88)
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Proof. Proof of this Theorem is similar Theorem 6.51 we obtain{
LαU(x)− f1(x)V (x, y) = 0,

Lβ(x)− g1(x)U(x, y) = 0,
(6.89)

where

U(x) =

∫
Ω

u(x, y)ϕ1(y)dy,

and

V (x) =

∫
Ω

v(x, y)ϕ1(y)dy.

By using Corollary 5.5 in [127], we get(
2

b− a

)α+β−1

(2α− 1)
1
2 (2β − 1)

1
2 Γ(α)Γ(β)

≤
(∫ b

a

|f(x)− λ1(Ω)|dx
) 1

2
(∫ b

a

|g(x)− λ1(Ω)|dx
) 1

2

. (6.90)

Theorem 6.52 is proved. �

6.17. Applications. In this Section we show some applications of the obtained in-
equalities and we note that u is a real-valued function.

6.17.1. Uncertainly principle. The inequality (6.17) implies the following uncertainly
principle:

Corollary 6.53. Let a > 0, u(a) = 0 and Dαa+u ∈ Lp(a, b) with p > 1. Then for the

Caputo fractional derivative Dαa+ of order α ∈
(

1
p
, 1
]

we have following inequality

‖u‖2
L2(a,b) ≤

a−1(b− a)α(
αp
p−1
− 1

p−1

) p−1
p

Γ(α)

∥∥Dαa+u
∥∥
Lp(a,b)

‖|x|αu‖Lq(a,b), (6.91)

where q = p
p−1

.

Proof. By using (6.17), we obtain

a−1(b− a)α(
αp
p−1
− 1

p−1

) p−1
p

Γ(α)

∥∥Dαa+u
∥∥
Lp(a,b)

‖xu‖Lq(a,b)
(6.17)

≥
∥∥∥u
x

∥∥∥
Lp(a,b)

‖xu‖Lq(a,b)

≥ ‖u‖2
L2(a,b) ,

(6.92)

completing the proof. �

Remark 6.54. Also, the uncertainly principle holds for the Riemann-Liouville de-
rivative.
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6.17.2. Embedding of spaces. Let us consider the space Ḣα
+(a, b) with α ∈

(
1
2
, 1
]

introduced in [128, 129] in the following form:

Ḣα
+(a, b) := {u ∈ L2(a, b), Dαa+u ∈ L2(a, b), u(a) = 0}.

If α < β, then by Poincaré–Sobolev-type inequality (6.9) we have Ḣβ
+(a, b) ↪→

Ḣα
+(a, b).

6.17.3. A-priori estimate. Here, we seek a real-valued solution to the following space-
fractional diffusion problem{

ut(x, t) +Dα
b−Dαa+u(x, t) = 0, (x, t) ∈ (a, b)× (0, T ),

u(x, 0) = u0(x), ∀x ∈ (a, b),
(6.93)

where α ∈
(

1
2
, 1
]
, u ∈ L∞(0, T ; Ḣα

+(a, b)), ut ∈ L2(0, T ; Ḣα
+(a, b)) and u0 ∈ L2(a, b).

We show an a-priori estimate for this problem. Let us define

I(t) = ‖u(x, ·)‖2
L2(a,b) =

∫ b

a

|u(x, t)|2dx.

Then by multiplying (6.93) by u, integrating over (a, b), and by using integration by
parts, we compute∫ b

a

ut(x, t)u(x, t)dx+

∫ b

a

u(x, t)Dα
b−Dαa+u(x, t)dx

=
1

2

d

dt

∫ b

a

|u(x, t)|2dx+

∫ b

a

|Dαa+u(x, t)|2dx

=
1

2

dI(t)

dt
+

∫ b

a

|Dαa+u(x, t)|2dx.

(6.94)

By using (6.9) with p = 2 in (6.94), we get

0 =
1

2

dI(t)

dt
+

∫ b

a

|Dαa+u(x, t)|2dx
(6.9)

≥ 1

2

dI(t)

dt
+

(2α− 1) Γ2(α)

(b− a)2α

∫ b

a

|u(x, t)|2dx,

(6.95)

it means dI(t)
dt
≤ 0. That is, I(t) is a non-decreasing function, then for t > 0, we have

I(t) ≤ I(0). Finally,
‖u(x, ·)‖L2(a,b) ≤ ‖u0‖L2(a,b).
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7. Conclusion

In this PhD dissertation, we develop fractional functional and geometric inequal-
ities on homogeneous Lie groups. More precisely, we develop the fractional calculus
and non-commutative analysis, i.e., we combined two big direction in mathemat-
ics. This perspective turned out to be extremely useful on both a conceptual and a
technical level. Let us review the obtained results in this dissertation:

In Chapter 3, where we study fractional functional and geometric inequalities on
homogeneous Lie groups. We obtain fractional Hardy, Sobolev, Gagliardo-Nirenberg,
Caffarelli-Kohn-Nirenberg inequalities on homogeneous Lie groups and its logarith-
mic fractional inequalities which is even new on Euclidean case. For the Riesz po-
tential (or a fractional integral), we get the Hardy-Littlewood-Sobolev inequality on
homogeneous Lie groups, which means boundedness of the Riesz operator in Lp−Lq
spaces. Also, we obtain the Stein-Weiss inequality for the Riesz potential. In addi-
tion, we show integer order logarithmic Sobolev-Folland-Stein inequality on stratified
Lie groups.

In Chapter 4, where we focus questions of the reverse functional inequalities. We es-
tablished reverse integral Hardy inequality on metric measure space with parameters
q < 0 and p ∈ (0, 1). As consequences, we obtained integral reverse Hardy inequal-
ity with parameters q < 0 and p ∈ (0, 1) on homogeneous Lie groups, hyperbolic
space and Cartan-Hadamard manifolds. In addition, we obtained integral reverse
Hardy inequality on metric measure space with parameters ∞ < q ≤ p < 0 and
a consequences we show reverse integral reverse Hardy inequality on homogeneous
Lie groups. Then we obtain the reverse Hardy-Littlewood-Sobolev, Stein-Weiss and
improved Stein-Weiss inequalities on homogeneous Lie groups with parametres q < 0
and p ∈ (0, 1). Also, we obtain the reverse Hardy-Littlewood-Sobolev, Stein-Weiss
type and improved Stein-Weiss type inequalities with parameters ∞ < q ≤ p < 0,
which is even new in Euclidean settings. In addition, we obtain the reverse Hardy,
Lp-Sobolev and Lp- Caffarelli-Kohn-Nirenberg inequalities with the radial derivative
on homogeneous Lie groups.

In Chapter 5, where we investigate nonlinear PDE on groups by using our results.
Firstly, we obtain Lyapunov inequalities for the fractional p-sub-Laplacian equation
and systems on homogeneous Lie groups. Then, we show existence of the weak solu-
tion for the nonlinear equation with the p-sub-Laplacian on the Heisenberg and strati-
fied groups and we show existence of the weak solution for the nonlinear equation with
the fractional p-sub-Laplacian and Hardy potential on homogeneous Lie groups. Then
we discussed blow-up results for heat equation with fractional p-sub-Laplacian on ho-
mogeneous Lie groups, for heat equation with fractional sub-Laplacian on stratified
groups, viscoelastic equation, heat and wave Rockland equations on graded groups.

In Appendix, we considered one-dimensional functional inequalities on Euclidean
case. Firstly, we obtain fractional Hardy, Poincaré type, Gagliardo-Nirenberg and
Caffarelli-Kohn-Nirenberg inequalities for the fractional order differential operators
as Caputo, Riemann-Liouville and Hadamard fractional derivatives. Also, we show
applications of these inequalities. In addition, we show Lyapunov and Hartman-
Wintner-type inequalities for a fractional partial differential equation with Dirichlet
condition, we give an application of this inequalities for the first eigenvalue and
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we show de La Vallée Poussin-type inequality for fractional elliptic boundary value
problem.

Most of results in this dissertation were published on high peer-reviewed journals.
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