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Preface

This dissertation is devoted to study of the fractional functional and geometric
inequalities on homogeneous Lie groups. More precisely, we develop the fractional
calculus and non-commutative analysis, i.e., we combined two big direction in mathe-
matics. This perspective turned out to be extremely useful on both a conceptual and
a technical level. Namely, we will systematically employ the ideas of Prof. Michael
Ruzhansky, Assoc. Prof. Durvudkhan Suragan, Assoc. Prof. Berikbol Torebek, As-
soc. Prof. Niyaz Tokmagambetov, Dr. Nurgissa Yessirkegenov, Dr. Bolys Sabitbek
and others.

In Chapter 2, we give main definitions and preliminary results from [!], [2] and
open access books [3] and [1], which both received the “Ferran Sunyer i Balauguer
Award” in 2016 and 2019, respectively. Also, we give definition of the fractional
Sobolev space on homogeneous Lie groups and integer order of the Sobolev space on
graded, stratified Lie groups.

In Chapter 3, we develop theory of the fractional functional and geometric inequali-
ties on homogeneous Lie groups. We obtain the fractional Hardy, Sobolev, Gagliardo-
Nirenberg, Caffarelli-Kohn-Nirenberg inequalities on homogeneous Lie groups and its
logarithmic fractional inequalities which is even new on Euclidean case. For the Riesz
potential (or a fractional integral), we get the Hardy-Littlewood-Sobolev inequal-
ity on homogeneous Lie groups, which means boundedness of the Riesz operator in
L9 — LP spaces. Also, we obtain the Stein-Weiss inequality (or a radially weighted
Hardy-Littlewood-Sobolev inequality) for the Riesz potential. In addition, we show
integer order logarithmic Sobolev-Folland-Stein inequality on stratified Lie groups.
This chapter is based on the papers [], [0], [7] (joint works with M. Ruzhansky and
D. Suragan), [3], [9], [10] (joint works with D. Suragan) and [11] (joint work with A.
Kashkynbayev and D. Suragan).

In Chapter 4, we study a question of the reverse functional inequalities. Firstly, we
start to study reverse integral Hardy inequality on metric measure space. We note
that, in the work [12], authors introduced polar decomposition on metric measure
space, which is play a key role in their proof. In this chapter, we obtain reverse inte-
gral Hardy inequality on metric measure space with parameters ¢ < 0 and p € (0, 1).
As consequences, we get integral reverse Hardy inequality on on homogeneous Lie
groups, hyperbolic space and Cartan-Hadamard manifoldse with parameters ¢ < 0
and p € (0,1) . Also, we show integral reverse Hardy inequality on metric measure
space with parameters co < ¢ < p < 0 and as a consequences we show reverse integral
Hardy inequality on homogeneous Lie groups. Then we obtain the reverse Hardy-
Littlewood-Sobolev, Stein-Weiss and improved Stein-Weiss inequalities on homoge-
neous Lie groups with parametres ¢ < 0 and p € (0,1). Also, we obtain the reverse
Hardy-Littlewood-Sobolev, Stein-Weiss type and improved Stein-Weiss type inequal-
ities with parameters co < ¢ < p < 0, which is even new in Euclidean settings. In
addition, we obtain the reverse Hardy, L”-Sobolev and LP- Caffarelli-Kohn-Nirenberg
inequalities with the radial derivative on homogeneous Lie groups. This chapter is
based on the papers [13], [I1] (joint works with M. Ruzhansky and D. Suragan), [17]
(joint work with D. Suragan) and [16].

In Chapter 5, we give applications of the functional inequalities in PDE. Firstly, we
obtain Lyapunov inequalities for the fractional p-sub-Laplacian equation and systems



on homogeneous Lie groups. As a application of Lyapunov’s inequality, we give
lower estimate of the first eigenvalue of the fractional p-sub-Laplacian equation and
systems on homogeneous Lie groups. Then, we show existence of the weak solution
for the nonlinear equation with the p-sub-Laplacian on the Heisenberg and stratified
groups. Also, we show existence of the weak solution for the nonlinear equation with
the fractional sub-Laplacian and Hardy potential on homogeneous Lie groups and
multiplicity of the weak solution with first stratum Hardy potential on Heisenberg and
stratified groups. Then we discuss blow-up results for heat equation with fractional
sub-Laplacian and logarithmic nonlinearity on homogeneous Lie groups and for heat
equation with sub-Laplacian and logarithmic nonlinearity on stratified group. Also,
we show blow-up results for viscoelastic equations with sub-Laplacian on stratified
groups, heat and wave Rockland equations on graded groups. This chapter is based

on the papers [5], [7] (joint works with M. Ruzhansky and D. Suragan), [3], [9], [17],
[18] (joint works with D. Suragan), [11], [19] (joint works with A. Kashkynbayev and
D. Suragan), [20] (joint work with B. Torebek and N. Tokmagambetov), [21] (joint

work with B. Bekbolat and N. Tokmagambetov) and [22].

In Appendix, we consider one-dimensional functional inequalities on Euclidean
case. Firstly, we obtain fractional Hardy, Poincaré type, Gagliardo-Nirenberg type
and Caffarelli-Kohn-Nirenberg inequalities for the fractional order differential oper-
ators as Caputo, Riemann-Liouville and Hadamard fractional derivatives. Also, we
show applications of these inequalities. In addition, we show Lyapunov and Hartman-
Wintner-type inequalities for a fractional partial differential equation with Dirichlet
condition, we give an application of this inequalities for the first eigenvalue and we
show de La Vallée Poussin-type inequality for fractional elliptic boundary value prob-
lem. Appendix is based on the papers [23] (joint work with M. Ruzhansky, B. Torebek
and N. Tokmagambetov) and [24] (joint work with M. Kirane and B. Torebek).

Almaty, Ghent, April 2020 Aidyn Kassymov



Summary

In this PhD dissertation, we study functional and geometric inequalities on homo-
geneous Lie groups. For the direct inequalities we obtain fractional Hardy, Sobolev,
Hardy-Sobolev, Gagliardo-Nirenberg, Caffarelli-Kohn-Nirenberg, logarithmic inequal-
ities, Hardy-Littlewood-Sobolev and Stein-Weiss inequalities on homogeneous Lie
groups. Also, we obtain integer order Sobolev-Folland-Stein inequality on stratified
groups.

For the reverse inequalities, we prove reverse integral Hardy inequalities with pa-
rameters ¢ < 0, p € (0,1) and —c0 < ¢ < p < 0. Also, we show reverse inte-
gral Hardy inequalities on homogeneous Lie groups, hypebolic space and Cartan-
Hadamard manifolds with ¢ < 0, p € (0,1). As a consequences, we show reverse
Hardy-Littlewood-Sobolev, Stein-Weiss and improved version Stein-Weiss inequali-
ties for the cases ¢ < 0, p € (0,1) and —oo < ¢ < p < 0. In addition, we obtained
the reverse Hardy, LP-Sobolev and LP- Caffarelli-Kohn-Nirenberg inequalities with
the radial derivative on homogeneous Lie groups.

Then we show some applications of these inequalities in linear and nonlinear PDE
on homogeneous groups.

Also, we consider one-dimensional functional inequalities on FEuclidean case. We
establish fractional Hardy, Poincaré type, Gagliardo-Nirenberg type and Caffarelli-
Kohn-Nirenberg inequalities for the fractional order differential operators as Caputo,
Riemann-Liouville and Hadamard fractional derivatives. Also, we show applications
of these inequalities. In addition, we show Lyapunov and Hartman-Wintner-type
inequalities for a fractional partial differential equation with Dirichlet condition, we
give an application of these inequalities for the first eigenvalue and we show de La
Vallée Poussin-type inequality for fractional elliptic boundary value problem.



Samenvatting

In dit proefschrift bestuderen we functionele en geometrische ongelijkheden bij ho-
mogene Lie-groepen. Voor de directe ongelijkheden verkrijgen we fractionele Hardy,
Sobolev, Hardy-Sobolev, Gagliardo-Nirenberg, Caffarelli-Kohn-Nirenberg, logaritmis-
che ongelijkheden, Hardy-Littlewood-Sobolev en Stein-Weiss ongelijkheden op ho-
mogene Lie-groepen. We verkrijgen ook een geheel aantal Sobolev-Folland-Stein-
ongelijkheid voor gelaagde groepen.

Voor de omgekeerde ongelijkheden, bewijzen we omgekeerde integrale Hardy on-
gelijkheden met parameters ¢ < 0, p € (0,1) en —0o < ¢ < p < 0. We tonen ook
omgekeerde integrale Hardy-ongelijkheden op homogene Lie-groepen, hyperbolische
ruimte en Cartan-Hadamard-spruitstukken met ¢ < 0, p € (0,1). Als gevolg hiervan
tonen we omgekeerde Hardy-Littlewood-Sobolev, Stein-Weiss en verbeterde versie
Stein-Weiss ongelijkheden voor de gevallen ¢ < 0, p € (0,1) en —0o0 < ¢ < p < 0.
Bovendien verkrijgen we de omgekeerde Hardy, L? - Sobolev en LP - Caffarelli-Kohn-
Nirenberg ongelijkheden met de radiale derivaat op homogene Lie-groepen.

Vervolgens tonen we enkele toepassingen van deze ongelijkheden in lineaire en niet-
lineaire PDE op homogene groepen.

We hebben ook rekening gehouden met eendimensionale functionele ongelijkhe-
den in Euclidisch geval. We hebben fractionele Hardy, Poincaré type, Gagliardo-
Nirenberg en Caffarelli-Kohn-Nirenberg ongelijkheden vastgesteld voor de fractionele
orde differenti€le operatoren als Caputo, Riemann-Liouville en Hadamard fractionele
derivaten. Ook tonen we toepassingen van deze ongelijkheden. Daarnaast tonen
we Lyapunov en Hartman-Wintner-type ongelijkheden voor een fractionele partiéle
differentiaalvergelijking met Dirichlet-voorwaarde, geven we een toepassing van deze
ongelijkheden voor de eerste eigenwaarde en tonen we de La Vallé Poussin-type on-
gelijkheid voor probleem met fractionele elliptische grenswaarden.
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1. INTRODUCTION

The first mathematicians who study of subelliptic analysis on the Heisenberg group
were Folland and Stein in [25], who consistently created a generalisation of the anal-
ysis for more general stratified groups [26]. And it can also be noted that Rothschild
and Stein generalised these results for general vector fields satisfying the Hormander’s
condition. We can say that these results were published in the famous book by Fol-
land and Stein [1] which laid the anisotropic analysis. And it is worth noting that
homogeneous Lie group is nilpotent.

The history of fractional calculus originates from the works of Riemann and Liou-
ville. And in these works, the concepts of the fractional integral were introduced for
the first time. Along with integer derivatives, the concept of a fractional derivative
was introduced, which was named after Riemann and Liouville. Then, Hadamard
in his works, he introduced a different definition of the fractional derivative. And
it is also worth noting that Caputo also introduced the definition of a fractional de-
rivative that in a particular case can be equal to the Riemann-Liouville derivative.
These operators are non-local operators. Note that these fractional derivatives are
one-dimensional operators. For the multidimensional case, the concept of a multi-
dimensional fractional Laplacian is introduced via Laplacian’s symbol. It is worth
noting that fractional calculus is currently a rapidly developing mathematical field.
The main aim of this dissertation is to combine non-commutative analysis on groups
and fractional calculus.

Nowadays, functional and geometric inequalities on Lie groups are currently a
rapidly developing field of mathematics. Many nonlinear differential equations of
problems of mechanics and problems of physics to which the global solvability of
problems is proved through functional inequalities. It means, one of the most im-
portant tool to study PDE is the functional inequalities. For example, integer order
multi-dimensional Hardy inequality demonstrates the following inequality:

/n u@)l (L) / Vul@)Pdr, 1<p<n, Ve GERY, (1)

[P n—p

p
where | - | is the Euclidean distance and constant (%p) is a sharp. This inequality

has applications in a lot of areas of mathematics, for example in spectral theory. Also,
by this inequality we can show Heisenberg-Pauli uncertainly principle, which has ap-
plication in quantum theory. Firstly, on group settings Hardy inequality was obtained
by Garofalo and Lanconelli on Heisenberg group in [27]. On stratified groups, Hardy
inequality were obtained in the works [28], [29] and [30], on homogeneous groups
was obtianed in [31] and on graded groups in [32]. In [33] the authors studied the
fractional p-Laplacian and established the following fractional LP-Hardy inequality

u(y)l?
L 28 dad 1.2
J T o o e et 2

where u € C°(RY) and C' > 0 is a positive constant. Also, best constant was
obtained in [33]. Generelasation of this inequality was obtained in [34].

Classical Sobolev inequality (or a continuous Sobolev embedding) is the one of the
most popular functional inequality. Sobolev inequality has a lot of applications in




10

PDE and variational principles. Let Q C RY be a measurable set and 1 < p < N,
then the (classical) Sobolev inequality is formulated as

[ullzr ) < ClIVullir@), ue G (Q), (1.3)

where C' = C'(N, p) > 0 is a positive constant, p* = NN—SD and V is a standard gradient

in RY (see e.g., [35]). Logarithmic Sobolev inequality was proverd in [36] and it has
the following form:

P P N IVl
/ |pu—|log | | dr < —log C—LP(RN , 1<p<oo, (1.4)
RN ||u||Lp (RN) ” ||Lp (RN) p ||uHLp (RN)

where u, Vu € LP(RY). On Heisenberg groups case Sobolev inequality inequality was
obtained by Folland and Stein, on stratified groups by Garofalo and Vassilev in [37],
on graded groups by Fischer and Ruzhansky in [3]. Also, the best constant of the
Sobolev inequality for general hypoelliptic (Rockland operators) on general graded

Lie groups was obtained in [38]. For the fractional order Sobolev’s inequality was
obtained in [39] in the case N > sp, 1 < p < o0, and s € (0, 1), for any measurable
and compactly supported function u one has

[ul| o vy < Clulsp, (1.5)

where C' = C(N,p,s) > 0 is a suitable constant, [u? = [on [on %dxdy and

Pt = NN N o There is a number of generalisations and extensions of above Sobolev’s
inequality. For example, in [34] the authors proved the following weighted fractional

Sobolev inequality: Let 1 < p < = and 0<p<®X =522, then for all u € Cs°(RY) one

has
p
2

/ / N u(y)l dxdy > / %dw P , (1.6)
RN JRV |1’—?/| +p5|$|5|y|5 RN |g|p

where C'= C(N,p,s) >0 and p* = NNI;p

E. Gagliardo and L. Nirenberg independently, obtained following (interpolation)
inequality

[l vy < ClIVul oty ull Fn ™22, w e H'(RY), (1.7)

where
2<p<ofor N=2,
2§p§]\2,—]_\72f0rN>2.

In particular case, from this inequality we can obtain Sobolev inequality. In addition,

the logarithmic Gagliardo-Nirenberg inequality was proved in [36] and its fractional
version was proved in [10]. On Heisenberg group, the Gagliardo-Nirenberg inequality
has the following form
2)/21 11(2p—Q(p—2))/2
lallfaasey < CNVmull Zofim ull 2y’ ", (18)

where Vp is a horizontal gradient and () is a homogeneous dimension of H". Also, in
[38] authors obtained Gagliardo-Nirenberg inequality and its the best constants on
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general hypoelliptic (Rockland operators) on general graded Lie groups. Fractional
version of the Gagliardo-Nirenberg was established in [11]:

lull - ey < Clul pllull pafpy, Yu € Co(RY), (1.9)

L (RN) )

for N>1, s€(0,1), p>1, a>1, 7> 0, and a € (0,1] is such that

1 1 s +1—a
—=al|l-——= :
T p N «

In the fundamental work of the L. Caffarelli, R. Kohn and L. Nirenberg in [12],
they obtained:

Theorem 1.1. Let N > 1, and let 1y, lo, I3, a, b, d, 6 € R be such that ly,l5 > 1,
I3>0, 0<6<1, and
1 a 1 b 1 d&d+(1-0)b
- 4=, — 4+ =, -4 ———>0. 1.10
LN LN LT N (1.10)
Then,
2P| iy vy < O[]Vl sy oy [

if and only if
1 dd+(1—=9)b 1 a-1 1 b
T S o (et 1— 42
p TR s (pe i) ra-a (e y),
a—d>0, if § >0,
. 1 dd+(1-60)b 1 a-—1
_d< S T S A
a—d<1, zf5>0andl3—|— N l1+ N

where C' is a positive constant independent of u.

Do, u€CPMRY), (1.11)

1
Ll2 (RN)

The logarithmic analogue of the Caffarelli-Kohn-Nirenberg inequality was proved in
[13]. Recently many different versions of Caffarelli-Kohn-Nirenberg inequalities have
been obtained, namely, in [11] on the Heisenberg groups, in [15] and [29] on strati-
fied groups, in [10] on (general) homogeneous Lie groups. In [11] the authors proved
the fractional analogues of the Caffarelli-Kohn-Nirenberg inequality in weighted frac-
tional Sobolev spaces. Also, a fractional Caffarelli-Kohn-Nirenberg inequality for an
admissible weight in RY was obtained in [31].

One of the pioneering work of Hardy and Littlewood in [17], they considered the
1D fractional integral operator on (0,00) given by

Tyu(z) :/0 |xu£y;|kdy, 0< <1, (1.13)

and proved the following theorem:
Theorem 1.2. Let 1 < p < g < oo and u € LP(0,00) with % = }D + A —1, then
HT)\UHL‘I(O,OO) S C||U||LP(O,oo)7 (114)

where C' is a positive constant independent of u.
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The multi-dimensional analogue of (1.13) can be written by the formula:

u(y)
Iu(z :/ dy, 0 <X <N. 1.15
(@) gy [z =y} ( )
The multi-dimensional case of Theorem 1.2 was extended by Sobolev in [15]:
Theorem 1.3. Let 1 < p < q < oo, u € LP(RY) with % = i + 2 — 1, then
[ Dvullpaeyy < Cllulpo@y), (1.16)

where C' is a positive constant independent of u.

Then, in [19] Stein and Weiss obtained the radially weghted extention of the Hardy-
Littlewood-Sobolev inequality, which is known as the Stein-Weiss inequality.

Theorem1.4.Let0</\<N,1<p<oo,oz<w,ﬁ<%,a+520and

1_ 14 Matf
T TN 1. If1<p<gqg<oo, then

| Dul| oy < COllJ|ul| Loy, (1.17)
where C' is a positive constant independent of u.

On the Heisenberg group, the Hardy-Littlewood-Sobolev inequality was proved by
Folland and Stein in [25] and an analogue of Stein-Weiss inequality was proved in
[50]. In [51] the authors studied the Stein-Weiss inequality on the Carnot groups.
We also note that the best constant in the Hardy-Littlewood-Sobolev inequality on
the Heisenberg group is now known (see Frank and Lieb [52]) and in the Euclidean
case this was done earlier by Lieb in [53].

The reverse Stein-Weiss inequality in Fuclidean setting has the following form:

Theorem 1.5 ([51], Theorem 1). Forn > 1,p € (0,1),¢ < 0,A > 0,0 < a < —4, and
0<pB< —]% satisfying %—i—i—%ﬁﬂ = 2, there is a constant C = C(n, o, B, A\, p, q) >
0 such that for any non-negative functions f € LY (R™) and 0 < Jgn 9P (y)dy < o0,

[ [ el = P r@stwlyPdyds = © ( [ s dz) o ( [ v (y)dy>; |

(1.18)
1,1 141
whereaqL?—landpqu,—l.

The inequality (1.18) is equivalent to,

(/ [ ( s |z — y|A|y|Bg(y)dy)qu); > O (/ gp(y)dy) 3 (1.19)

From last, if @« = 8 = 0 we obtain the reverse Hardy-Littlewood-Sobolev inequality.
Improved Stein-Weiss inequality was obtained in [55] on Euclidean upper half-space.
For more results about the reverse Hardy—Littlewood—Sobolev inequality in Euclidean
space, we refer the reader to [56] [57], [58], [29] and the references therein.

By summarising above facts, in this dissertation we developed direct and reverse in-
equalities on homogeneous groups. In Chapter 3, we obtain fractional Hardy, Sobolev,
Gagliardo-Nirenberg, Caffarelli-Kohn-Nirenberg inequalities on homogeneous Lie groups
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and its logarithmic fractional inequalities. For the Riesz potential (or a fractional in-
tegral), we get the Hardy-Littlewood-Sobolev inequality on homogeneous Lie groups,
which means boundedness of the Riesz operator in L? — LP spaces. Also, we obtain
the Stein-Weiss inequality for the Riesz potential. In addition, we show integer order
logarithmic Sobolev-Folland-Stein inequality on stratified Lie groups.

In Chapter 4, we prove reverse integral Hardy inequality on metric measure space
with ¢ < 0 and p € (0,1) and 0o < ¢ < p < 0, integral reverse Hardy inequality
on homogeneous Lie groups, hyperbolic space and Cartan-Hadamard manifolds. As
consequences we show Hardy-Littlewood-Sobolev, Stein-Weiss and improved Stein-
Weiss inequalities on homogeneous Lie groups with parametres ¢ < 0, p € (0,1) and
oo < q < p < 0. In addition, we obtain the reverse Hardy, LP-Sobolev and LP-
Caffarelli-Kohn-Nirenberg inequalities with the radial derivative on homogeneous Lie
groups.

In Chapter 5, we give applications of the functional inequalities to PDE. Firstly, we
obtain Lyapunov inequalities for the fractional p-sub-Laplacian equation and systems
on homogeneous Lie groups. Then, we show the existence of the weak solution for
the nonlinear equation with the p-sub-Laplacian on the Heisenberg and stratified
groups and we show the existence of the weak solution for the nonlinear equation
with the fractional sub-Laplacian and Hardy potential on homogeneous Lie groups.
Then we discuss blow-up results for heat equation with fractional sub-Laplacian and
logarithmic nonlinearity on homogeneous Lie groups, for heat equation with sub-
Laplacian and logarithmic nonlinearity on stratified groups, viscoelastic equation on
stratified groups, heat and wave Rockland equations on graded groups. We give
introduction in every section of this chapter.

In Appendix, we consider one-dimensional functional inequalities on Euclidean
case. Firstly, we obtain fractional Hardy, Poincaré type, Gagliardo-Nirenberg and
Caffarelli-Kohn-Nirenberg inequalities for the fractional order differential operators
as Caputo, Riemann-Liouville and Hadamard fractional derivatives. Also, we show
applications of these inequalities. In addition, we show Lyapunov and Hartman-
Wintner-type inequalities for a fractional partial differential equation with Dirichlet
condition, we give an application of this inequalities for the first eigenvalue and
we show de La Vallée Poussin-type inequality for fractional elliptic boundary value
problem.

I want to note with pleasure, some of the results of this dissertation were included
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2. PRELIMINARIES

In this chapter, we briefly give definitions, main properties and theorems of the
homogeneous, graded, stratified Lie groups and Heisenberg groups. Also, we will fix
the main notations in this dissertation. All main definitions were taken from [1], [2]
and open access books [3] and [1].

2.1. Homogeneous Lie groups. In whole of this dissertations, any Lie algebra g
is assumed to be real and finite dimensional. The lower central series of g is defined
inductively by

90 =8, 84 =[98, 86-1);
terminates at 0 in a finite number of steps. If the lower central series of the Lie
algebra g terminates at 0 in a finite number of steps, then this Lie algebra is called
nilpotent. Then, if g(s11) = {0} and g(s) # {0}, then g is said to be nilpotent of step
s. A Lie groups G is nilpotent (of step s) whenever its Lie algebra is nilpotent (of
step s). If exp : g — G is the exponential map, by the Campbell-Hausdorff formula
for X, Y € G sufficiently close to 0 we have

expXexpY =exp H(X,Y), (2.1)

where H(X,Y) is the Campbell-Hausdorff series which is an infinite linear combina-
tion of X and X and their iterated commutators and H is universal, i.e. independent
of g, and that
1

H(X,Y):X+Y+§[X,Y]+..., (2.2)
where the dots indicate terms of order > 3. If g is nilpotent, the Campbell-Hausdorff
series terminates after finitely many terms and defines a polynomial map from V x V'
to V', where V' is the underlying vector space of g. Let us give the following property
about Haar measure (see e.g., [3] and [1]).

Proposition 2.1 ([4, Proposition 1.1.1], [3, Proposition 1.6.6] and [I, Proposition
1.2]). Let G be a connected and simply-connected nilpotent Lie group with Lie algebra
g. Then if u denotes a Lebesque measure on g, then poexp™! is a bi-invariant Haar
measure on G.

From [3] and [!], a family of dilations of a Lie algebra g is a family of linear
mappings of the form
Dy =Exp(Aln)\) = Z(ln(/\)A)k, (2.3)
k=0

where A is a diagonalisable linear operator on g with positive eigenvalues, and D,
is a morphism of the Lie algebra g, that is, a linear mapping from g to itself which
respects to the Lie bracket:

VX,Y €g, A>0, [D\X,D,Y] = D,[X,Y]. (2.4)

Let us give definition of the homogeneous Lie groups, (see e.g., [1, Definition 1.1.6]
and [3, Definition 3.1.7]):
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Definition 2.2 (Homogeneous Lie group). A homogeneous (Lie) group is a connected
simply connected Lie group whose Lie algebra is equipped with dilations.

Also, we have another definition of homogeneous Lie group (see [2]):
Definition 2.3 (Homogeneous Lie group). A Lie group (on RY) G with the dilation
Dy(x) := (N2, ..., \¥aN), v1,..., vy >0, Dy :RY - RY,

which is an automorphism of the group G for each A > 0, is called a homogeneous
(Lie) group.

For simplicity, in this dissertation we use the notation Az for the dilation D). We
denote

Q:=vi+...+uvy, (2.5)

the homogeneous dimension of a homogeneous group G. Let dx denote the Haar
measure on G and let |S| denote the corresponding volume of a measurable set S C G.
Then we have

IDA(S)] = A9|S| and / FOw)dz = A2 / f(w)de. (2.6)
G G
Then we have the following widely use proposition in our dissertation.

Proposition 2.4 ([1, p. 19]). Let G be a homogeneous Lie group with homogeneous
dimension @, v > 0 and dx be a Haar measure. Then, we have

d(rz) = r9dzx.

Definition 2.5 ([!, Definition 1.2.1]). For any homogeneous group G there exists
homogeneous quasi-norm, which is a continuous non-negative function
G 3z |z| €]0,00), (2.7)
with the properties
a) x| = |z~ for all z € G,
b) [Ax| = A|z| for all x € G and A > 0,
¢) || =0iff x = 0.
Let us define quasi-ball centered at x with radius r in the following form:
B(z,r):={z € G: |z "y <r}. (2.8)

Then we have the following proposition about triangle inequality of the quasi-norm,
which is widely use in our proofs.

Proposition 2.6 ([!, Proposition 1.2.4]). Let G be a homogeneous Lie group. Then
there exists a homogeneous quasi-norm on G which is a norm, that is, a homogeneous
quasi-norm | - | which satisfies the triangle inequality

zy| < [z] + |y|, Vz,y €G. (2.9)
Furthermore, all homogeneous quasi-norms on G are equivalent.

Also, let us also recall a well-known fact about quasi-norms.
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Proposition 2.7 ([3], Proposition 3.1.38 and [1], Proposition 1.2.4). If | - | is a
homogeneous quasi-norm on G, there exists C' > 0 such that for every x,y € G, we
have

|zy| < C(la] + ly])- (2.10)

Moreover, the following polarisation formula on homogeneous Lie groups will be
used in our proofs.

Proposition 2.8 ([!, Proposition 1.2.10] and [3, Proposition 3.1.42]). Let G be a
homogeneous Lie group and & :={x € G : |z| = 1}, be the unit sphere with respect

to the homogeneous quasi-norm | -|. Then there is a unique Radon measure o on &
such that for all f € LY(G), we have

/f dx—/ /fry Lo (y)dr. (2.11)

Let us give main definitions of the fractional Sobolev space on homogeneous Lie
groups. Assume that p > 1 and for any measurable function v : G — R we define fol-
lowing quasi-seminorm which is called the Gagliardo quasi-seminorm in the following
form

<// |u|y 1x|Q+sP dxdy) , S € (0,1), Q > 1, (212)

where | - | is a quasi-norm which is defined in Definition 2.5. By W*?(G) we call
the fractional Sobolev spaces on homogeneous groups. For p > 1 and s € (0, 1), the
functional space
W(G) ={u:u € LP(G), [u]s, < +o0}, (2.13)
is called the fractional Sobolev space on G.
If Q C G is a Haar measurable set, we define the Sobolev space

: ju( g
WHP(Q) = {u:u e LP(Q), [ulspa = </ / = 1:E|Q+Sp dxdy < 400}, (2.14)
Let us define W;*(Q2) as the completion of C§°(£2) with respect to the norm

HUHW(f’pm) = [U]S,p,ﬂ' (2.15)
Let us define weighted fractional Sobolev space on homogeneous Lie groups in the
following form

Ws,pﬂ((g) ={u:ue L’(G),

1
2|77 |y | =P Ju(z) — u(y)l” ’
Uspp = (// o] dzdy | < 400}, (2.16)

where (1, B € R with 8 = (8, + [, that is, it depends on [; and fs.
As above, for a Haar measurable set Q C G, p > 1, s € (0,1) and f;, (2 € R with
B = B1 + B2, we define the weighted fractional Sobolev space

WPP(Q) = {u:u e LP(Q),

xﬁlpyBQZ)u uy p %
Ulspp0 = (//‘ | ’||y 1|:L-’Q4)rsp W)l da:dy) < 4oo}. (2.17)
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Obviously, taking f = 8, = 5> = 0 in (2.17), we recover (2.14).

Then, let us give main definition of the fractional p-sub-Lapalcian. For a (Haar)
measurable and compactly supported function u the fractional p-sub-Laplacian (—A,)
on G can be defined as

S

— p—2 —
(—A,)*u(z) = 2lim [u(z) U(y1|1 Cgi”(x) Wy zee  (218)
INO J G\ B(x,6) |y~ ta|@tsr
where | - | is a quasi-norm on G and B(x,d) is a quasi-ball with respect to | - |, with

radius d centered at x € G. If p = 2, then we have (—Ay)* = (—A,).
If p> 1, for all o € WP (Q), we have

(- = [ [ 1) = HOPHO) ) = 0D g, 10

‘y 1$|Q+sp

2.2. Graded Lie group. In this section, we present a brief summary of the basic
definitions and properties of the graded Lie groups.

Definition 2.9 (Graded Lie group and graded Lie algebra (see e.g., [/, Definition
1.1.4] and [3, Definition 3.1.1])). A Lie algebra g is called graded if it is endowed with
a vector space decomposition (where all but finitely many of the V}’s are 0)

Consequently, a Lie group is called graded if it is a connected and simply-connected
Lie group whose Lie algebra is graded.

Before defining the Rockland operator, let us define Rockland condition. By 7 and
G we define representation and unitary dual of G, respectively and by H>° we define
the smooth vectors of representation w € G. Let us give definition of the Rockland
condition (see [3, Definition 4.1.1]):

Definition 2.10 (Rockland condition). Let A be a left-invariant differential operator
on a Lie group G. Then A satisfies the Rockland condition when

(Rockland condition) for each representation 7 € @ except for the trivial repre-
sentation, the operator m(A) is injective on H°, that is,

Vo e H?, m(A)v=0=0v=0. (2.21)

Then let us give Rockland operator on homogeneous Lie groups G (see e.g., [3,
Definition 4.1.2]).

Definition 2.11 (Rockland operator). Let G be a homogeneous Lie group. A Rock-
land operator R on G is a left-invariant differential operator which is homogeneous
of positive degree and satisfies the Rockland condition.

Then let us give proposition which connected homogeneous Lie groups and Rock-
land operators.

Proposition 2.12 ([3, Proposition 4.1.3]). Let G be a homogeneous Lie group. If
there exists a Rockland operator on G then the G is a graded.

Then let us give some example for the Rockland operator on graded Lie group.
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Lemma 2.13 ([3, Lemma 4.1.8]). Let G be a graded Lie group on R™. We denote
by {D,},~o0 the natural family of dilations on its Lie algebra g, and by vy, ..., v, its
weights. We fiz a basis { X1, ..., Xy} of g satisfying

D, X;=r"%"X;, 5=1,...,n, r>0.

If vy is any common multiple of vy, ..., v,, the operator
Z(—l)”i c;X; 7, ¢j = const, (2.22)
j=1

is a Rockland operator of homogeneous degree 2uy.

By combining Proposition 2.12 and Lemma 2.13, we have that the in homogeneous
Lie group G, if there exists Rockland operator in the form (2.22) as in Lemma 2.13,
then G is a graded. In the Chapter 5, we will widely use Rockland operator as in

Lemma 2.13. Let us give definition of fractional power of the Rockland operator (see,
[3, Definition 4.3.1]).

Definition 2.14. Let R be a positive Rockland operator on a graded Lie group G.
For p € [1,00), we denote by R, the operator such that —R, is the infinitesimal
generator of the semi-group of operators f +— fx hy, t >0, on LP(G).

Then let us give a definition of the Sobolev space on graded Lie groups. Assume
that R be a positive Rockland with homogeneous degree v and R, fractional power of
R on graded Lie group G, which is defined in Definitions 2.11 and 2.14, respectively.

Definition 2.15 (Inhomogeneous Sobolev space ([3, Definition 4.2.2])). Let R be a
positive Rockland operator on a graded Lie group G and s € R. If p € [1,00), the
Sobolev space LP(G) is the subspace of S’(G) obtained by completion of S(G) with
respect to the Sobolev norm

1£ll2e) = I+ Rp)¥ fllzre), Vf € S(G).
Let us give definition of the homogeneous Sobolev space on graded Lie groups.

Definition 2.16 ([3, Definition 4.4.12]). Let R be a Rockland operator of homoge-
neous degree v on a graded Lie group G, and let p € (1,00). We denote by L?(G)

the space of tempered distribution obtained by the completion of S(G) N Dom(RE )
for the norm

1flliz@) = IRs flle), Y € S(G)N Dom(Ry).

Then let us give the following theorem about the independence of the spaces LP(G)
and L?(G) of a particular choice of the Rockland operator R.

Theorem 2.17 ([3, Theorem 4.4.20]). Let G be a graded Lie group and p € (1,00).
The homogeneous LP—Sobolev spaces on G associated with any positive Rockland
operators coincide. The inhomogeneous LP—Sobolev spaces on G associated with any
positive Rockland operators coincide.
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Then by using last theorem, norms of the inhomogeneous and homogeneous Sobolev
spaces on graded Lie groups, respectively have the following forms:

e = ( / RE frd + / Iflpdx> | (2.23)

iz = ([ 1R? )" (2.24)
In this disseratation, we can use any of the notation of the Sobolev space on graded
Lie groups L?(G) = H*(G).

I1f

and

2.3. Stratified Lie group. In this section, we give definitions of stratified group
(homogeneous Carnot group) and basic propositions. Let us briefly recall the defini-
tion of the stratified Lie group. We refer [2], [3] and [1] for further discussions in this
direction.

Definition 2.18. A Lie group G = (R, o) is called a stratified Lie group if it satisfies
the following assumptions:

(a) For some natural numbers ny+...4+n, = n the decomposition R" = R™ x... xR""
is valid, and for every A > 0 the dilation 9, : R® — R" given by

onx) = o (=W, .., z™) = @, Xz

is an automorphism of the group G. Here z¥) € R™ for k=1, ..., 7.
(b) Let ny be as in (a) and let Xi, ..., X,,, be the left invariant vector fields on G
such that X;(0) = a%kb for k=1,...,n;. Then

rank(Lie{ X1, ..., X;,, }) = n,

for every x € R", i.e. the iterated commutators of X, ..., X,;;, span the Lie algebra of

G.
Also, by [3] and [!] we have the following definition of the stratified Lie group:

Definition 2.19. A graded Lie algebra g is called stratified if V; generates g as an
algebra. In this case, if g is nilpotent of step m we have

g =@V, st [V, Vi) C Vigy, (2.25)

and the natural dilations g are given by

k=1 k=1
Consequently, a Lie group is called stratified if it is connected and simply-connected
Lie group whose Lie algebra is stratified.

As in homogeneous groups, by dx we understand Haar measure on stratified Lie
group G.

Then let us give as example of the stratified Lie groups which is called the Heisen-
berg group. Let us briefly give the definition of the Heisenberg group. By H" :=
(R?+1 0), we define Heisenberg group with group law:

Eof = (T4, J+y t+t'+22'J—Ty')), VE=(F,7,t) and V&' = (2, ¢/, 1), (2.27)
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where & = (7,7,t) € R2"! with 7 € R", § € R" and ¢ € R. The family of dilations
has the following form

5y (€) 1= (AT, AT, A%t), VA > 0. (2.28)

Then, homogeneous dimension of H" is () = 2n + 2 and the topological dimension is
2n + 1. The Lie algebra g of the left-invariant vector fields on the Heisenberg group
H" is spanned by

X, =0;4+2y;0,, i=1,...,n,
Y, = 0hyi — 22,0, 1=1,...,n,
with their non-zero commutator
[X;,Y:] = —40,.
Let us define Sobolev space on stratified Lie groups. By the notation
Ve = (X1,...,Xn)

we called (horizontal) gradient. Let € be an open subset G. Let us consider Sobolev
space

SP(Q) == {u:u € LP(Q), |Vgu| € LP(Q), p>1}, (2.29)

supplemented with the norm

1
p
|| s1p() == (/ lul? + IVGulpdx) )
Q

Then, we define the functional class S;”(Q2) to be the completion of C3(Q) in the

norm
1
P
lullproy = ( [ Veuraz)".

So, the sub-Laplacian on stratified groups is given by
Ag := Vg - Vg,
and the p-sub-Laplacian is given by
L, =V (Ve ?Vg).
On Heisenberg group, the sub-Laplacian is given by
A :=Vpg- VH>
where Vg = (X1,...,Y,), and the p-sub-Laplacian is given by
Ay, =V (Ve ?Vy). (2.30)

For simplicity, throughout this dissertation we use any of the notation Vg and Vg»
for the horizontal gradient and for the sub-Laplacian we use any of the notation Ay
and Ag». It is well known that the class of the Heisenberg group is a subclass of the
stratified Lie groups, that is, obviously, the above definition is valid for the Heisenberg
group setting.
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2.4. Metric measure space, Hyperbolic space and Cartan-Hadamard man-
ifolds. Let us introduce, main definitions of the metric measure space, hyperbolic
and Cartan-Hadamard manifolds. Definitions of this sections will widely use in the
Chapter 4.

Definition 2.20 ([12]). Let (X,d) be a metric space where d is a metric and dz be
a Borel measure. Then this triple (X, d, dx) is called metric measure space.

By [12], let us consider (X, d, dz) metric measure space allowing for the following
polar decomposition at a € X: we assume that there is a locally integrable function
A € L} . such that for all f € L}(X) we have

/f )dx —/ Erf r, w)A(r, w)dwdr, (2.31)

for the set ¥, = {x € X : d(x,a) = r} C X with a measure on it denoted by dw, and
(r,w) — a as r — 0. This polar decomposition will play a key role in the proof of
our results in Chapter 4.

Let us give definition of the hyperbolic space.

loc

Definition 2.21. The hyperbolic space H" (n > 2) is a complete and simply con-
nected Riemannian manifold having constant sectional curvature equal to —1.

Let us denote that by d(0, ) the hyperbolic distance in the ball model between the
1+|3:\
-

origin and z in the following form: d(0,z) = In . So then let us give definition of

the Cartan-Hadamard manifolds:

Definition 2.22 ([12]). Let K, be the sectional curvature on (M, g). A Riemannian
manifold (M, g) is called a Cartan-Hadamard manifold if it is complete, simply con-
nected and has non-positive sectional curvature, i.e., the sectional curvature K, <0
along each plane section at each point of M.

By [12], the condition (2.31) is rather general since we allow the function A to
depend on the whole variable z = (r,w). The reason to assume (2.31) is that since
X does not have to have a differentiable structure, the function A(r,w) can not be
in general obtained as the Jacobian of the polar change of coordinates. However, if
such a differentiable structure exists on X, the condition (2.31) can be obtained as
the standard polar decomposition formula. In particular, let us give several examples
of X for which the condition (2.31) is satisfied with different expressions for A(r,w):

(I) Euclidean space R™: A(r,w) = r""1.

(IT) Homogeneous groups: A(r,w) = 9~ where Q is the homogeneous dimension
of the group. Such groups have been consistently developed by Folland and
Stein [1], see also an up-to-date exposition in [3].

(ITT) Hyperbolic spaces H": A(r,w) = (sinhr)"~1.

(IV) Cartan-Hadamard manifolds: Let us fix a point a« € M and denote by p(x) =
d(x,a) the geodesic distance from z to a on M. The exponential map exp, :
T.M — M is a diffeomorphism, see e.g. Helgason [00]. Let J(p,w) be the
density function on M. Then we have the following polar decomposition:

/Mf(:li)div = /000 - f(exp, (pw))J(p,w)p" tdpdw,



n—1
so that we have (2.31) with A(p,w) = J(p,w)p" .

23
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3. DIRECT INEQUALITIES
In this chapter, we show basic direct fractional functional and geometric inequalities

on homogeneous Lie group.

3.1. Fractional Hardy inequality. In this section, we show fractional Hardy in-
equality. For showing fractional Hardy inequality, we need some preliminary results.

Lemma 3.1 ([33], Lemma 2.6). Assume that p > 1, then for allt € [0,1] and a € C,
we have

la —t|P > (1 —t)P"(|a]P —1). (3.1)

In the all following lemma, we assume that @@ > 2, p > 1 and s € (0,1) be such
that @ > sp.

Lemma 3.2 (Picone-type inequality). Let w € Wi*(Q2) be w > 0 in Q C G and
suppose that (—A,)*w =v > 0 with v € L, () , then for all u € C§*(Q), we have

// Iu‘y 13;,Q+ps " e dy ><( Ap)’w, u';:‘p1>. (3.2)

Proof. Proof of this lemma is based [31] and [61]. By setting v = 14% and k(z,y) =

Jw[P=t

1 .
Ty 1z[@Fps> then we obtain

(=A@, o) g2 / dm/\w )P () — wly))k(z, y)dy

jul”

= 1diﬂ/Q lw(z) — wy) P2 (w(z) — wy))k(z,y)dy,

where (-, -) is inner product in L?*(€2), By using the definition of quasi-norm we have
|z~ = |z| for all x € G. Then we get

L 1 11
(z,y) = [Tz @ |o@Fs | |o1|Qtes

1 1
= = = k(y7x)7

G o) 1 e
for all z,y € G. By using k(z,y) is symmetric, we obtain that

<(_Ap>sva>L2(Q) -

3 [ (B - P o) ol 2(ete) — ot e

Let g == and

R(z,y) = |u(z) —uy)l’ — (lg(2)["w(@) — lg(y) Fwy))lw@) — wy)["~*(w(z) — w(y),

then we have

(=A@, 0) o // (e, 9k, y)dyda = > //m ) — u(y)Ph(z, y)dydz.
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By the symmetry argument, we can assume that w(x) > w(y). By using Lemma 3.1

with t = % and a = % and we establish that R(z,y) > 0. Thus, we have proved

the inequality

lu(x
(Bt < 5 [ [ PGt

Lemma 3.2 is proved. O

S

Lemma 3.3. Let w = |z|™7 with v € (0, %:I{ ) where () > sp, then there exists a

positive constant () > 0 such that

s — 1 :
(=Ay)*(|z]™) = ﬂ(V)W a.e. in G\ {0}. (3.3)
Proof. Let us set r = |z| and p = |y| with z = r2’ and y = py’ where |2/| = |¢/| = 1.
Then by using polar decomposition (see (2.11)), we have
CAN®
+o00 dcr(y’)
— r = gV P2 (Y ) gL (/ ) d
f e = (e ) %
B 1 +o00 - E p—2 y
o |z|pstre=1) [, r=
SO A Vi / do(y') p
r= ) r@ s | (y)” b (@t
Let p P = and L m fG W, we get
1 +o0 ) e
(=4p)'w = W/o 1= 7P (1 = 5" L(p)p? ™ dp.
Then it easy to see
+oo
u(y) = o(p)dp (3.4)

0

with ¢(p) = [1—p~7[P=*(1 = p~7) L(p)p? "
We need to show that p(y) is a positive and bounded. Firstly, let us show bound-
edness of p(y). We get

“+o00

_/0 SPp+ | Spdp =T+ I (3.5)

By changing to the new variable ( = % we obtain L(p) = L (%) = (@*Ps[(¢) for any
¢ > 0. Thus, we establish

+oo
p) = [ = — L)y (3.6)
For p — 1 we get
(077 = P (p@ T — P L(p) = (p = 1) 7P € LU(1,2). (3.7)
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Similarly, for p — oo we have
(p7 = 11 (p? 7t — P L(p) = p 1P € LY(2, 00). (38)

It means we show that p(y) is bounded. By (3.6) with v € (0 QfPS) we see that

» p—1
p(7y) is positive.
Lemma 3.3 is proved. O

Finally, as a result we obtain the following analogue of the fractional Hardy in-
equality on G.

Theorem 3.4 (Fractional Hardy inequality). Assume @ > 2, p > 1 and s € (0,1)
be such that Q > sp. Then for all u € C§°(G) we have

WO 1 < cpup (3.9)

|x|sp - $,p?
where C' is positive constant.

Proof. Let u € C°(G)

//’uw 11-’Q+ps dfdy><( Ap)s(|$|_7)>%>

u(z)[”

[P

— ,U(’Y) dx, (3.10)
G

completing proof. O

3.2. Fractional Sobolev inequality. In this section we prove fractional Sobolev
inequality on the homogeneous Lie groups.

For showing an analogue of the fractional Sobolev inequality, firstly we need show
some preliminary results.

Lemma 3.5. Let p > 1, s € (0,1) and K C G be Haar measurable set. Fiz x € G
and a quasi-norm | - | on G, then we have

dy ~5p/Q,
where C' = C(Q, s,p) is a positive constant, K¢ = G\ K and | K| is the Haar measure
of K.

/Q
Proof. By setting § := (%ﬁ;') , where wq is a surface measure of the unit quasi-

ball on G and let us fix © € G such that K N B(x,d) # 0 where B(x,¢) is a quasi-ball
centered at x with radius 6. Then, we get

|K°N B(z,8)| = |B(x,5)| — | K N Bz, )]

3.12
— |K| - |K A B(x,8)| = |K A B*(x,5)], (3:12)
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where | - | is the Haar measure on G. Then,

/__ﬂg_:/ _ﬁL_+/ Ay
ke |y~ la|@tsp KenB(zs) |y |9 KenBe(z,s) |y T|@TP

dy dy
= Q + 1,1Q
KenB(z,s) 09TP KenBe(a,s) [y~ a]|9TsP

_|K°N B(z,0)| / dy
B 6@ +sp KenBe(as) |y o[

By using (3.12) we get

/ dy S |K¢N B(z,9)| +/ dy
ge [y~ to|@ts — 6Q+sp KenBe(s) Y197

B |K N B(x,0)| / dy
B §Qtsp KenBe(w) |y 1|9

:/ dy+/ Ay

KnBe(z,6) 09T KenBe(zs) |y |9

z/ _gL_+/ o
KnBe(z,s) |y w|@TP KenBe(z,s) || @TP

_ / dy
Be(es) [y ta|QFTeP

By using the polarisation formula (2.11) with centered at x, we have

/ L > C|K|~*P/@, (3.13)

OJ

Lemma 3.6 ([39], Lemma 6.2). Fiz T > 1. Let p > 1 and s € (0,1) be such that
Q > sp, m € Z and ay be a bounded, decreasing, nonnegative sequence with a; = 0
for any k > m. Then

ZaéQ—Sp)/QTk < C Z G,k+1&;sp/QTk,
ke kEZ, a0
for a positive constant C' = C(Q, s,p,T) > 0.
Lemma 3.7. Suppose that p > 1, s € (0,1), Q > sp and | - | be a quasi-norm on

G. Assume that u € L®(G) be compactly supported and ay, := |{|u| > 2*}| for any
k € Z. Then,

C Z ak-‘rla P/QQkp < [ ]sp’ (314>
kEZ, ay#0
where C' = C(Q,p, s) is a positive constant and [uls, is defined by (2.12).

Proof. Let us define
= {|u| > 2"}, k € Z, (3.15)

and
Dy = A\ Ay = {28 < Jul <27} and di = [D,]. (3.16)
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Since Ay C Ay, it is easy to see
k41 S Qg . (317)

By the assumption u € L*(G) is compactly supported, a; and dj, are bounded and
vanish when k is large enough. Also, we notice that the Dy’s are disjoint, therefore,

U D=4, (3.18)
ez, 1<k
and
U D=4 (3.19)
ez, 1>k

By using (3.19) we establish that
Y di=ua (3.20)
I€Z, 1>k

and

dk = Q) — Z dl. (3.21)

1€Z, I>k+1

From a; and dj are bounded and vanish when k is large enough, (3.20) and (3.21)
are convergent. Let us define the convergent series

Si= > 2%, (3.22)

IEZ, a—1#0 )
We have that D;, C A, C Aj_1, then, a;_sf/le < a;_sf/Qal,l. Thus,
{(i,1) € Z s.t. ai_y # 0 and a,/d; # 0} C {(i,1) € Z s.t. a1 £ 0} (3.23)
By combining (3.23) and (3.17), we compute that

Z Z 2ipai—j{7/Q d; = Z Z Qipai—jf/le

1€7Z, a;1#01€Z, [>i+1 i€Z, a;i—1701€Z, I>i+1, asP/Qd;#0
<> > 2 M= Y Y 2%a 9,
i€Z 1€Z, 1>i+1, aj_170 I€Z, aj_1£0i€Z, i<l—1
+oo
< > 2ra M = YT N ol PG <50 (3.24)
I€Z, aj_1#£0i€Z, i<l—1 1€Z, a;_ 170 k=0

Notice that
Ju(z)| = Ju(y)|| < [u(z) —u(y)|, Vz,y €G.

By setting ¢« € Z and z € D;, then for all j € Z with j < ¢ — 2, for any y € D; using
the last inequality, we have that

|u(:c) o U(y)‘ > 2i o 2j+1 > 2i . 21'71 > 22'71



and using (3.18), we get

|U | (i—1)p
Z / |y—1x|Q+3P Z |y_1x|Q+5P

JEL,j<i—2 JEL,j<i—2

_ 2(i1)p/ dy .
As [y~ ta|@ts

By combining (3.25) and Lemma 3.5, we get
|’LL |p ip SP/Q
Z / |y_1x|Q+Sp d > C2
JEZL, j<i—2
where C' is a positive constant. It means, for any ¢ € Z, we get
3 / / [ule) = wWF 44y > cowa; /%4,
|y 1x|Q+s
JEZ, 7<i—2
By combinig (3.26) and (3.21) we obtain that

|u(x y)|P
Z // ly~ 19€|Q“p Tl te@ W

JEZ, j<i—2

> (2110% Sf/Q a; — Z QZP(ZZ_S{J/QCZ) .

1€Z,1>i+1

From (3.26) and (3.22) we obtain that

O O R

€L, a;—17#0 jEZL, j<i—2

>C Y 2% > CS.

1€ZL,a;—17#0

Then, by using (3.24), (3.27) and (3.28), we have

Z Z // |u|y 1:B|Q+sp| dzdy > C Z Qipai_jf/Qai

1€2L,a;—170 JEZL, j<i—2 1€ZL,a;—170
Y Y #azo Y 2%, - s
€L, a;—1£01EL, 1>i+1 1€Z,a;—17#0

29

(3.25)

(3.26)

(3.27)

(3.28)

>C ), 270, % - 2. 2 // |u|y‘1x|Q+sp|pd dy.

1€ZL, a;—170 1€ZL,a;—170 JEZL, <i—2
Thus,

Sy [ ez G S 2,

€L, a;—17#0 JEZL, j<i—2 1€Z,a;—170

|P

(3.29)
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for a constant C' > 0. By usmg Symmetry property and (3. 29) we obtain that

|u(z !u )P
// ly~ l:BIQ“Z’ SR ay _Z Iy‘lle“p Ty Ta@

u(e) — u(y)l
>2 3 // = 1x|@+sp Tyt W

,JEL, j<i

ulz) — u(y)
22 3 8 [ e

€L, a;—17#0 jEZL, j<i—2
>C Y 2%,
i€Z,a;—17#0
Lemma 3.7 is proved. O

Lemma 3.8. Assume that 1 <p < oo and u : G — R be a measurable function. For
any n € R

Uy, = max{min{u(x),n},—n}, for any z € G. (3.30)
Then,
i un @) = e
Proof. The proof is the same as in [39, Lemma 6.4]. O

Then, by using the above lemmas we show the following analogue of the fractional
Sobolev inequality on G:

Theorem 3.9 (Fractional Sobolev inequality). Let p > 1, s € (0,1), Q@ > sp be
such that p* = p*(Q,s,p) = 2. Let | -| be a quasi-norm on G. Then for any

Q—sp
u € W*P(G) and for any quasi-norm |- |, we have
[ull o () < Clusp, (3.31)

where C' = C(Q,p,s) >0 .

Proof. Firstly, assume that [u]s, Gaghardo semmorm) is bounded, i.e.,

|u(x
// = 1I|Q+sp da:dy < +00. (3.32)

and we assume that u € L>(G

If (3.32) is executed for bounded functions, this is also true for the function w,
obtained by cutting the function u at levels —n and n levels. Then, by combining
Lemma 3.8 and (3.32) with the dominated convergence theorem, we have that

: _ |un (2 ()"
ol = i / / - 1x|Q+$P ey

// |u|y 1:L‘|Q+SP " dray = [ulf, (3.33)

As in Lemma 3.7 we define a, and Ay, so we have

1/p* 1/p*
|l Lo (@) = Z/ ]p dx < Z/ o(k+1)p* 1.
keZ Ak\Ak+1 kez Y Ar\Akt1
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1/p*
< <Z 2(’““)?*‘%) . (3.34)

kEZ

Therefore, by combining Lemma 3.6 with p/p* =1 — sp/Q < 1 and T' = 2P, obtain

p/p”
”uHI[)/p* (G) < 2P <Z 2kp*ak> < 2P Z QkPa’(cQ_SP)/Q

keZ keZ
<C > 2%, (3.35)

k€Z, arp#0

for a positive constant C' = C(Q, p, s,q) > 0. By using Lemma 3.7 get

|u(x
Jal ey <O S 2,7 1<c// - 1g;|cz+sp o) = w34 — Cpupe,

k€EZ, a#0 ( )
3.36
completing the proof. O

3.3. Fractional Hardy-Sobolev inequality. In this section, we prove fractional
Hardy-Sobolev inequality. We generalise both above inequalities, so the unified exten-
sion with arbitrary quasi-norm gives new inequalities even in the Euclidean (Abelian)
case.

Theorem 3.10 (Fractional Hardy-Sobolev inequality). Suppose that p > 1, s €
(0,1), @ > 2,0 < B < spand Q > sp be such that p; 5 = ’%. Then for any
u € W*P(G) and for any quasi-norm |- | of G, we have

w(x)|Pss @
( /@ %d;ﬁ) < Clul,,, (3.37)

where C' s a positive constant.

4 =B B _
sp

Proof. By using Holder’s inequality with %

/|u<x>pss /|u [Pt
i
¢ lo° |x|6
’ sp—pB
([ a)* ([t ™
:L»S

By some calculation, we have

< 5) sp (p(Q—B)_é) sp

P =5 ) s Q—sp s)sp—p

_Qop—Psp—QB+0sp_sp _ Qv _ .
s(Q — sp) sp—B Q-sp

=1, we get
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where p* is the Sobolev exponent. By combining the fractional Hardy and Sobolev
inequalities, that is, Theorems 3.4 and 3.9, we establish

B sp—B
fu(z)Pho u@P  \* o\
. ) u(e)
G |$| |$| G
(3.9) 5 =T
< Clu)sp < lu(x) p*dx) (3.39)
G
(3.31) B m=by
< Clulsplulsy
Sy
= Clu]sp )
Let us compute the exponent of the last term
By Sp—ﬁp*:§+8p—5 Qp
S sp S sp Q) — sp
_1(BQ-BwtQw-8Q\ _1w@Q-5)
S Q — sp s Q—sp o
Finally, we have
’U/ |ps 8 ﬂ+s;;;[3p* p:
L S < Cluliy " = Oy,
completing the proof. O

Corollary 3.11. In Theorem 5.10, by setting 5 = 0, we obtain the fractional Sobolev
inequality (3.31).

Corollary 3.12. When 8 = sp in Theorem 5.10, we have the fractional Hardy in-
equality (5.9).

Remark 3.13. In the Abelian case (RN, +), Q@ = N with |-| = |- |g where || g is the
standard Fuclidean distance, (3.37) implies the fractional Hardy-Sobolev inequality on
RY (see [62]). Moreover, the inequality is valid for any quasi-norm, not necessarily
the Fuclidean one. Therefore, even in the Abelian (Euclidean) case it extends the
results of [02].

3.4. Fractional Gagliardo-Nirenberg inequality. In this section we show frac-
tional Gagliardo-Nirenberg inequality on homogeneous Lie groups. One of the gen-
eralisation of the fractional Sobolev inequality is the fractional Gagliardo-Nirenberg
inequality.

Theorem 3.14. Suppose that Q@ > 2, s € (0,1), p>1, > 1,7 >0, a € (0,1],
@ > sp and

1 1 s +1—a

—=al-—= .

T p @ «

[ull - @) < Cluls,llullialsy ¥ u e Ca(G), (3.40)
where C' = C(s,p,Q,a,a) > 0.

Then,



Proof of Theorem 3.1/. By using the Holder inequality with % =a (}D — %) + =2 we
establish

T T at —a)T at 1—a)7
lallpr ey = | Tulrde = [ ful a0 de < flulle o Jullfoel,  (341)
G G
where p* = %. By combining (3.41) and the fractional Sobolev inequality (Theo-
rem 3.9), we have
r ar 1—a)T ar 1—a)r
lullz-) < lullfe @ llullga@ < Cluli lull gy
that is,
lullzr@) < Cluls,llullafe), (3.42)
where C' is a positive constant independent of u. Theorem 3.14 is proved. O]

Remark 3.15. In the Abelian case (RN, +) with the standard Euclidean distance
instead of the quasi-norm and s — 17, from Theorem 5.1/ we get the Gagliardo-
Nirenberg inequality which was proved in [63] and [64].

Remark 3.16. In the Abelian case (RN, +) with the standard Euclidean distance in-
stead of the quasi-norm, from Theorem 5.1/ we get the fractional Gagliardo-Nirenberg
inequality which was showed in [11].

3.5. Fractional Caffarelli-Kohn-Nirenberg inequality. In this section we prove
the weighted fractional Caffarelli-Kohn-Nirenberg inequality on the homogeneous Lie
groups.

Let us give some notations. The mean of a function w is defined by

1 1
ug = ]{Zu(a:)da: = @/Qudx, u € L (Q), (3.43)

where |(2| is the Haar measure of Q) C G.
We will also use the decomposition of G into quasi-annuli Aj;, defined by

Ay ={rcG: 2F <|z| < 2F1} (3.44)

where |z] is a quasi-norm on G.

To show the fractional Caffarelli-Kohn-Nirenberg inequality on G we will use the
fractional Gagliardo-Nirenberg inequality (Theorem 3.14) in the proof of the following
lemma.

Lemma 3.17. Suppose that Q@ >2, s€ (0,1),p>1,a>1,7>0,a€ (0,1] and

l>a<1_i)+1_a.
T \p Q a
Assume that A >0 and 0 < r < R and set

Q={zeG: I <|z| <R}
Then, for every u € C*(Q), we have

1—a
a

(f1o-uarie)” < cnn ityn (flae) " )

where C,. g is a positive constant independent of u and \.
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Proof of Lemma 5.17. Without loss of generality, we suppose that 0 < s’ < s and
7/ > 7 are such that

I 1 ¢ +1—a

o p Q a
and A = 1, then let €2y be

O ={xeG: r<|z|] <R}

By combining the fractional Gagliardo-Nirenberg inequality (see, Theorem 3.14),
Jensen’s inequality and [u]y p 0 < Clulsp0, we establish

1
& 1
U — UQ de) = U — UQ
(er | ozl vl

< Cprllu — ug, ||LT’(Q1) < Cyrlu— qu]g’,pvﬂl ||u||;<(191)

]u(x) — Ug, — u(y) + uq \p » 1—
<Cygr (/ / 1 - “—dxdy ul|7 a0
7 Q1 J ‘yilm‘QJrsp ” ||L ()

S CT,R[U]Z,p,Q1 HuH};((lﬂl)

l1—a

< Gl (][ \uwdx) ,
1

(3.46)

where C,. p > 0. By setting u(Az) instead of u(z), we have

1 a

TN W) —aOw)P .\ ¢
dr) <G, dxd
) < Crr </ / g

1—a
a

X(m% |u()\x)|°‘da:> . (347)

| Jo,

(1.

u(Azr) — ]{21 u(Az)dz
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Then by using (3.46) and Proposition 2.4, we calculate

(f o)~ f wtoras def ~ (7 [ ]te)~ g7 [ wtorao

1
1 1 4 T
= | = w(Ay) — — [ u(Ay)d( y d)\y)
(i 0 = s [ wowaom)| dow)
1 \@ 2@ T =
=|—— — u(Ay) — u(Ay)dy| d
1
1 TONT
dy)
(|Ql| o |Ql| o8
a l—a
u(Ay) P )”( 1 )“
dzxdy — u(Ax)|*dz
(// mEa o Ql'( )
AZONE M)—U()\’yﬂ (\z)|*d B
o N2QNQFep |yl |Q+sp |Ql| AQ‘“ ©)|"de

1—a

_ ( / / AT Q'“ Mm_ﬂg(fsf)’ d(/\:v)d(Ay))p (@ /Q |u(>\x)|“‘d(>\x)) ;

1—a

() 3 i)

l1—a

a(sp—Q) a o o
O (@ [ 1ut) dx) |

completing the proof. O

- 1
dx)

u(Ay) — u(Ay)dy

| /\

(3.48)

Theorem 3.18 (Fractional Caffarelli-Kohn-Nirenberg inequality). Suppose that QQ >
27 36(071)7p>17 @21,T>0,&€(0,1],61,ﬁ2, 57 N77€R7 Bl—i_ﬁQZB and

o) (g
e +1-a)(-+5). 3.49
AN VA A (3:49)
Suppose in addition that, 0 < 8 — o with v = ac + (1 — a)u, and
.1 v 1 pg-=s
b—oc<sonlyif —+—==—+ . 3.50
vif S+o=,%0 (3.50)
Then for uw € CHG) we have
el ullr@) < Cluls, gl ull e (3.51)
when%+%>0, and for u € CHG \ {e}) we have
| ull @) < Cluls gl ull (3.52)

when % + %— < 0. Here e is the identity element of G.
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Proof. Firstly, let us consider the case (3.50), that is, 8 —o < s and % +t3 1 =

14 B=s
p+Q'

By combining Lemma 3.17, A\=2% r =1, R =2 and Q = 4, we obtam

l1—a

1
T ok sp ak(sp—Q) «
<][ lu — uAk’q\Td:U> <C2 v “ [l pan, (][ ]u\“d:v) : (3.53)
Ak,q Ak,q

where Ay, is defined in (3.44) and k € Z. From (3.53) we obtain

/ |u|"dx = / U — ua, + ua,|"dz
Ay Ay

=C / |u,4k|7dx+M |u—uAk|de)
Ag Akl J 4,

e (|Ak||uAk|T il o - uAkrdx)

(3.54)

Ag

(1—a)T
1 o o
Adllon ]+ 25 Az, (o [ ) )
k

ak(sp—Q)T
<C <2Q’f|uAk|T 42" gkQy-

Q(l—a)Tk

)2, )

Then, from (3.54) we establish

J.

|7 ul dx < olk+1)yT u|"dr < C2(@+m)k ugy, |”
A k

k
ak@?p*@)"z Q(1— a)Tk

1+ 02R9kQ9 [W)7 a4 | o (Ar)

k k 3

+C2(WT+Q+‘1(SP D7 _ Q(l a>T (/ / kP19 pﬁ2|u($) —u(y)|pdxdy> ’
Ay J A,

Qkp5|y—1 a;|Q+sp

2(Q+77)k|uA |T

(A—a)T

2k’o¢u @ “ (Q+v7)k T
X ; 2ka#\u(w)| dx < C2QT Ry, |
k

+ C2(VT+Q+E(SP;Q)T—Q<1;a)7—aﬁ7_ﬂ7—(l_a))k (/ / ‘x|p61 ’y|p62 |u(x) _ u(y)|pdxdy> P
A, J A,

ly~tal

(1—a)T

Ag

+02(77+Q+a(3p D _ Q(l a7 aﬁfﬂu‘r(lfa))k[u]afr (1—a)r

sl | oy
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From (3.49), we have

vT+Q+“(Sp;Q>T—Q“;“)T—am—mu_a)

_o- (2 1 a(sp=Q) (1—-a) af p(l-—a)

=Q <Q+T+ o - i )

— Or 1 B-s —a 1 n a(SP—Q)_(l—G)_@_M(l—a)
_Q<(p+ @)“1 )(a+62)+ o) « G Q )
= 0.

Thus, we obtain

o - pa T l—a)T
el de < C20T M, |7+ Cluliy g, el ull D), (3.55)
k

and by summing over k from m to n, we get

n
/ 2 fulda = / 2 ufdz < CS 20T Ry |
un mAk {2m<|z|<2n+1} k=m

k=

art l—a)T
+ C Z [u]s,p,B,Ak || |x|“u”(La(A)k)7 (356>
k=m
where k,m,n € Z and m < n — 2.
Let us show (3.51). By choosing n such that
suppu C Bon, (3.57)

where Ban is a quasi-ball of G with the radius 2.
The following known inequality will be used in the proof.

Lemma 3.19 (Lemma 2.2, [65]). Let & > 1 and n > 1. Then exists a positive
constant C' depending & and n such that 1 < { <&,

C

Let us consider the following integral

T
% u — % u
Ak+1,qUAk,q Ak+17qUAk’q

1

B ‘Ak+17Q| + |A/€,q| Apg1,qUAR ¢

]
- u — u
|Ak+1,q| + ‘Ak7Q| ( Ak+17q Ak+1,qUAk,q

(laf + [6)" < Cla]” +

dx

dx

-
u — f u
Ak+1,qUAk,q

-
dx + / U — ][ U
A Ap+1,dUAk g

d;v) .

k,q
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Then, we compute

Apq1UA App1UAg

1
Akl + A

“
Ag
1

Z -
| Akra| + [Ar] J 4,

J.

T

dz

>t
| Akga] + [Ax]

Ak+1
-
u — f u
Ap1UAg

T

dx

u — ][ u
Ap+1UAg

dx)

dx

-
u — f u
Ap+1UAg
.
U —][ u | dx
App1UAL

S N SR R
| A1 + Akl S a, |Apg1] + [Ar| J 4, (3.59)
| A T '
S A — udx
[Arsr| + Akl Jay |
= 1 [ A1 udx
[Aps1] + Akl [ A ] + [Ax| Ja,
| A T
S b1 — udx
Al + 141 !
1
(| Apra| + [Ag])mH i Aku = | Akﬂu )
| A1 || Axl” 1 1
= udyx — ——— udx
(‘A’H—l‘ + ‘Ak’)TJrl ‘Ak’ Ay ‘A’H-l‘ Apqa
[Aual" LAl

([Agyr| + [Ag])7H!
> C|U’Ak+1 - uAk’T'

|uAk+1 - U’Ak|T

By combining (3.59) and Lemma 3.17, we get

|U’Ak+1 - uAk|T < C][

[u]T(I

8,0, Apr1UAL

T

dx

u — ][ u
Ap1UAg

(1—a)T

][ |u|“dx
Ap1UAg

Ap1UAg
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By using this fact with 7 = 1, we get

[ua, | < fua,, —ua |+ |ua,,,|
(-a)

ak(sp Q) a a *
< |uAk+1| + C2 [u]s,p,Ak+1UAk (][ |U| dl’) ) (360)
Ap1UAg

and from Lemma 3.19 and n = 7, { = 2779, where ¢ = sz#fw < 1, since y7+Q >
0, we obtain

2(’7T+Q)k|uA ‘T < c2(k+1)(’YT+Q |uAk+1‘T + C[ ] ,p,B,Ak+1UAk|’|'r| UHLOL(A;_luAk)

By summing over k from m to n and by using (3.57) we have

Z 2(vr+Q)k|uAk|T < Z CQ(ICle)(vTJrQ)WAIc+1 i

k:m k:m

+OZ :Pﬁ:Ak+1UAk|||x|M( )uHLa AI:-HUAk)‘ (361)

From (3.61), we get

(1) Y 20m @y |7 < 20T+ @myyy |7 (1) Y 20T @y |7
k=m k=m+1

< CZ »p/BAk+1UAk|||$| u”La (Ape1UAL)" (362)

This yields

- r (1—a)T
Z 207+Q) k|u T <0 Z ,P BrAk+1UAR |||J:|“u||L& A)k+1UAk) (3.63)
By using (3.56) and (3.63), we have
/ e < €3 S Py G0
{2m<|z|<2nt1}

Assume s,t > 0 be such that s + ¢ 2 1. Then for any xy,yr > 0, we have
n n $ n t
Yz < (Z xk> (Z yk) . (3.65)
k=m k=m k=m

d-a)r ‘a l-a >Land s> f-o,

a
a 'p «

By using this inequality in (3.64) with s = Tt =
we obtain

/{ |>2 }WTW' do < Clulsy s a Mzl ull ol - (3.66)
x|>2™m

Inequality (3.51) is proved.
Let us show (3.52). The strategy of the proof is similar to the previous case. By
choosing m such that
supp u N Bom = . (3.67)
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By using Lemma 3.17 we get

(1—a)T

’ aTk(sp Q) ra o @
’uAk+1 U’Ak | < C [u] s,p,Ak+1UAk ‘U’| d'r
Ag+1UAg

1+27 T+Q

From Lemma 3.19 and choosing ¢ = < 1, since y7 + @) < 0, we establish

2(’YT+Q)(k+1)’ |7' < CQk(’YTJrQ ‘UA “r —i—C[ ] ,p,B,AkHUAkH‘x’ uHLa o o)

and by summing over k from m to n and by using (3.67) we obtain

T T 1—a)T
Z 207+Q) k|u | <C Z 7P,B,Ak+1UAk|||x|uul|(La(A)k+1UAk)' (3.68)

k=m—1

By using (3.56) and (3.68), we obtain that

1
fo TR SO S Wl (869
m x n

k=m—1

From (3.65) we get

/ [l de < Clullype a2l ulliel a- (3.70)
{le|<2nt1) e >

The proof of the case s >  — ¢ is complete.
Let us prove the case of § — o > s. Without loss of generality, we suppose that

[Wsps = lulla@) =1, (3.71)
where L 8

— 4 + =

p Q a  Q

We also suppose that a; > 0, 1 > ay and 71, 75 > 0 with
1 a9 1-— (05}

— =4 , (3.72)
T, P «
and
i Gyl 8 gy Lo lma ws
p a Q P o Q
y a+1—a as<0 th 1>1> 1+1—a1 ais (3.73)
1 — - — , en — — — - A .
P a Q ~ T TP « Q
By taking 71 = a18 + (1 — a1)p and vo = az(f — s) + (1 — ag)p, we have
I m (1 5_5) (1 N)
—+ L >a + +(1l—a) |-+ = 3.74
nQ pPo ) TGt .
and 5
1 7 (1 —s) (1 u)
S P +(1—a —+=. 3.75
A VA A A VA .

Assume a; and as be such that

la — ai| and |a — ay| are small enough, (3.76)
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1l B=s 1 u
£ = 4+ = :
a2<a<a1,1p+ 0 >a+Q, (3.77)
1 B=s 1 pu
f — —+=. .
a1<a<a2,1p+ 0 <0z+Q (3.78)
By combining (3.76)-(3.78) in (3.74), (3.75) and (3.49), we get
I m_ 1 v 1 7
—+ >4+ L4+ E50. 3.79
n Q T Q T Q (3.79)
From (3.73) in the case % + La_ G >0witha >0, 8—0>sand (3.76), we get
1 1 1 s 1 a
T —(a—a)) == = —(B — 3.8
i (a—ay) (p 0 a> +Q(ﬁ o) >0, (3.80)
and L1 L1
a
;_T_Qz(a—(m)(]—)—a)—|—@(ﬁ—0'—8)>0. (381)

By combining (3.73), (3.80) and (3.81), we get
Tn>T, To >T.

Thus, by using last fact, (3.76) and Holder’s inequality, we get

[ ullz-@\my < Clllz]ulln6), (3.82)
and
lzl ullz- B,y < Clllz[®ul[L72 (s, (3.83)
where B is the unit quasi-ball. By using the previous case, we get
Nz ullzn @) < Clulgy, glllelull2fg) < C, (3.84)
and
2 ull ) < Cluls?, glllolull i) < C. (3.85)
The proof of Theorem 3.18 is complete. U

Remark 3.20. In the Abelian case (RY,+) with the standard Euclidean distance
instead of quasi-norm in Theorem 5.18, we get the (FEuclidean) fractional Caffarelli-
Kohn-Nirenberg inequality (see, e.g. [11], Theorem 1.1).

Remark 3.21. In the Abelian case (RN, +) with the standard Eucledian distance
instead of the quasi-norm and s — 17 in (3.52), we get classical Caffarelli-Kohn-
Nirenberg inequality.

Remark 3.22. By taking in (3.52) a =1, 71 =p, 51 = P =0, and v = —s, we get
an analogue of the fractional Hardy inequality on homogeneous Lie groups (Theorem
3.4).

Remark 3.23. In the Abelian case (RN, +) with the standard Eucledian distance
instead of the quasi-norm and by taking in (3.52) a =1, 7 =p, 1 = P2 = 0, and
v = —s, we get the fractional Hardy inequality (Theorem 1.1, [1]).

Remark 3.24. By taking in (3.51) a =1, 7 =p*, 51 = P =0, and v = 0, we get

an analogue of the fractional Sobolev inequality on homogeneous Lie groups (Theorem
3.9).
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Now we consider the critical case % + % = 0.

Theorem 3.25 (Fractional critical Caffarelli-Kohn-Nirenberg inequality). Suppose
that @ > 2, s € (0,1), p > 1, a > 1,7 >1,a € (0,1], p1, B2, B, pt, v € R,

B+ B2 =B,

A S MUl CE)

-+ ==al| -+ +1—a)l —+=]). 3.86
AN VA A (3:50)

Suppose in addition that, 0 < B — o < s with v = ac + (1 — a)p.

Ifi+ & =0 and suppu C Bg, then, we have

i
In 2R
Tz

u| <O, el ue CHE), (3.87)

L7(G)

where B = {x € G : |x| < R} is the quasi-ball and 0 < r < R.

Proof of Theorem 3.25. The proof is similar to the proof of Theorem 3.18. In (3.55),
by summarising over k from m to n and by fixing € > 0, we get

[ |(—) i 03 o

jz|>2m} Intte

aT l—a)r
+02mwmwwmmgwm&

By using Lemma 3.17, we get

1—a

«@
ak(sp—Q)
’uAk+1 - uAlc’ S 02 P [u]z,p,Ak+1UAk (f ’u‘ad.’ﬂ> .
App1UAg

From Lemma 3.19 with ¢ = ("il }Z)) we establish

lua, | |wa |7
(n+1—kyF =~ (n+1i-kr
+Cn+1- k)T_l_e[U](;;,ﬁ,AkHuAk|||$| ||La (Ajs1UAR)" (3.89)
For ¢ > 0 and n > k, we have
1 1 1

- ~ . 3.90
By combining this fact, (3.89), (3.90) and e = 7 — 1, we get
- |UA | (1—a)T
Z (n + 1k_ C Z SP’B,AkHUAk || |I|Hul|La(Ak+1uAk)' (391>
k=m
By using (3.88) and (3.91), we have
’ | (1—a)T
A| |>2m} In” 28 ’u‘ dz < C Z Sp’ﬂ’Ak“UAkH’x‘ UHLD‘(AkHUAk)' <3'92)
z|>2m Jz] k=m



By combining (3.65) with (3.86) and 0 < § — 0 < s, where s = et = (1—G)T’ we
have s+t > 1 and we get

| ’ T l1—a)T
/{  leldr < C S e el (3.93)

jaj>2my In" T

k=m

completing the proof. O

3.6. Fractional Logarithmic inequalities. In this section, we show fractional log-
arithmic inequalities on homogeneous Lie group. By the way, we need some prelimi-
nary results. Firstly, we show weighted Holder’s inequality on G.

Lemma 3.26. Assume that 1 < p < r < q < o0, a € [0,1], @ € R, |z]*u €
L(G) N LY(G) with

1 1—
=22 (3.94)
r p q
then we have
| *ullr@y < Nzl fogey 2l 1oy (3.95)

Proof. By using Holder’s inequality we obtain

Izl g =/G\:UI‘”"\U(SE)|Tdar=/G(!ﬂfl‘“!u(ﬂv)I)“’”(Iﬂvlo‘!u(ﬂ:)I)“_“)’"Olﬂlj

ar (1—a)r
< (/ ]q;‘“p]u(x)]pdx> ? (/ \:U]aq\u(xﬂqda:) (3.96)
G G
o ar a 1—a)r
I A [ [
with .
ar  (—ay (3.97)
p q
O

Now let us show logarithmic Holder’s inequality.

Lemma 3.27 (Logarithmic Hélder’s inequality). Suppose that |z|*u € LP(G)NLI(G)
with some a € R, 1 < p < q < 00. Then we have

Py [P) ap|y,|P x|%ul|?,
/ (al™lul?) |“| log T ) g < 4o el | (3.98)
] ull7, ezl ull7 g, q—p ezl ull7 )
Proof. Let us con81der the following function
1 (03
F (;) = log (|||=|*ul| L)) - (3.99)

Firstly, we need to prove the function (3.99) is convex. By using Lemma 3.26, we
obtain

1 (07 [e% «
F <_) = log ([|l2]ull ) < 1o (lll2/ull (e 171wl )

(03 a [0 —a 1 1
= tog (lel"ulf ) + og (Hlafullzty)) =oF (3) + 1 =0)F (3), (3100

q
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with a € [0,1] and 1 =
Since we have

l—a
+ .

r) = rlog/
the derivative of (3.101) is

log/ 22 u(z)[} dm+7‘<log/|x| )| dx)
/
(f@ || *u(x ?dx)

f({; |x| |u(x | dx

a
p

zlog/ \x]%]u(x)\%da:+r
G

—tog [ [oflu(o)|*do - 1 Jo(Jel"u@))* tog(a* (o))

r Js || |u(x | dx
From (3.100) F(r) is convex, hence, we get
l —_—
Py » FO) = FO)

- r—r ’

r>r>0.

With r = % and r’ = % it yields

Lol e a0k o g
INEENCIZE

c 0y ([ Lol
q—7p ¢ Illz]*u|| o @)

We have
1 ap Pd ap rd
log / PP = 2B Je U@ g o] fu(w) Pde
G

Jo lelou(z)Pda
g 2P () P log ||l g da

J lzloru(z) [Pz

By using last fact in (3.104) we establish logarithmic Holder’s inequality
Lol e s [,
Je lzlerlu(z)pdz

Je llzloul log || ulde  Jg |#|°"u(@) [ log [[|#|"ull g d=

Je |zl |u(z)Pdx Je |zloPu(z)Pdx

Ll log el lulpdz J Lol lu(e) P log [zl ull gy da
fG |x|oP|u(x) |Pdz fG |z|oP|u(x)|Pdx

(T T O W L e
o NPTl \ el ) = a=p 8 \ Tzl ull g,

(3.101)

(3.102)

(3.103)

(3.104)

(3.105)

(3.106)

O
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3.6.1. Fractional Logarithmic Sobolev inequality. In this subsection, we present the
fractional logarithmic Sobolev inequality on G.

Theorem 3.28 (Fractional Logarithmic Sobolev inequality). Let p > 1, s € (0,1),
Q > sp be such that p* = p*(Q, s,p) = QQpSp. Let | - | be a quasi-norm on G. Then
for any u € W*P(G) and for any quasi-norm | - |, we have the fractional logarithmic

Sobolev’s inequality

p p p
/ o (I da:<Qlog o Wep [u]”’ (3.107)
[ull 7o) [ull7o () [ul[7,

where C' is a positive constant independent on u.

Proof. By using weighted logarithmic Holder’s inequality (3.98) with a = 0, we obtain

p p U\t q
Llog |u| dr < Llog HH;G) : (3.108)
[ullZoe [l ) - il
G L»(G q—p LP(G)

pQ
Q—sp

By the assumption we have 1 < p < ¢ = p* =
get

P (I WP e [ e
og T =
e lullfs) 7 e p* [

(3.31) g P
< *p log (C M“’ > (3.109)

and by using Theorem 3.9, we

Here we have

" pQ Q
b Q-sp _  Q-sp Q
x_ o pQ T _Q 1 )
p p Q—sp p Q—sp 1 5P

O

Remark 3.29. In the Abelian (Euclidean) case G = (RY,+), we have Q = N and
|| =1"|g (|| is the Euclidean distance), if s — 1~ and from (3.107) we get the
logarithmic Sobolev inequality from [36].

3.6.2. Fractional Logarithmic Hardy-Sobolev type inequality. Motivated by the above
result, in this section we prove the fractional logarithmic Hardy-Sobolev inequality
on the homogeneous Lie groups.

Theorem 3.30. Suppose that p > 1, s € (0,1), Q@ > 2,0 < < sp and Q > sp be

such that p; 5 = %. Then for any u € W*P(G) and for any quasi-norm | -| of G,
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the fractional logarithmic Hardy-Sobolev’s type inequality:

s e
|.:E ps,B u|p €T ps,ﬁ u|p
/G _|£ | log ’—‘f | dz
I]x] pS’BuHiP(G) || pSﬁU”ip(@)
_ ulP
< e ﬁlog C [B]S’p , (3.110)
sp —

iEd p:’BUH]zp(G)

where C' is a positive constant and independent of u.

Proof. In the assumptions of Lemma 3.27, by taking a = —pépﬁ .Then, it is easy to see
that p < p; 5 = ¢. Hence by using Lemma 3.27 and Theorem 3.10 with o = —pﬂ*’;,
we get ’
o — g
(lz] "o |ul?) I
/(G T log & dx
iEd pSﬁ“”ip(@) e pSﬁUHip(@)
__B8
I p
(3.98) * [ "8 ull -
< Db g e (3.111)
Psg— P T,
s 2l %5 ull, o,
(3.37) * ulP
< *ps,IB 10g C [B]s,p
Pspg—DP

liEd ”:’BUII’EP(@)

Finally, we compute

with sp > 8 > 0. U

Remark 3.31. In (5.110) with = 0, we have the fractional logarithmic Sobolev
inequality on G. However, from (3.110) it does not follow the fractional logarithmic
Hardy inequality since in Lemma 3.27 we have the assumtion p < q = p; 4. To get
the fractional Hardy inequality we have to set 3 = sp, then p = q = p; .

Remark 3.32. In the Abelian case (RN, +), Q@ = N with || = |-|g where |- | is the
standard Euclidean distance, combining (3.110) and (3.37) we obtain the following
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fractional logarithmic Hardy-Sobolev inequality:

_Bp_ _Bp

P 3 p P 3 D
T u xT U
T e PRI,
R
Il 5" ull, g 25wl g
u(x)—u P
N_B fRN fRN z—)y Nfs)zl dxdy
< log ., (3.112)
sp—

|Hx|E UHLP(]RN)
for all u € WP(RY).

Remark 3.33. In the Abelian case (RY,+), Q = N with |- | = | - | where | - |g is
the standard Euclidean distance and s — 17, combining (3.110) and (5.37) we have
the following fractional logarithmic Hardy-Sobolev inequality:

_ B _bp
Pi g P18
x|l 7 |ulP x ulP
[ (),
RN I3 Py
ol gy \Mlels ™ w2
_ Vu
NP e | HHLPRN . (3.113)
b= T,
el o™l

and also, setting 5 =0, we get result from [30].

3.6.3. Fractional Logarithmic Gagliardo-Nirenberg inequality. In this subsection, we
show fractional logarithmic Gagliardo-Nirenberg inequality on G.

Theorem 3.34 (Fractional Logarithmic Gagliardo-Nirenberg inequality). Under the
assumptions of Theorem 5.1/ with the parameters 1 < p < o0, 1 < ¢ < o0 and
q < p*, there exists C = C(Q,p,s,q) > 0 such that for all measurable and compactly
supported u we have

q q 1 q
il () g < s | O s ) g (3.114)
¢ llullzee) [l o) 1- [[wllFq

Proof. From the fractional Gagliardo-Nirenberg inequality (3.4()) and the logarithmic
Holder inequality (3.98), we get

ul? ul? 1 ||u||7'f G
o Tl 5\ Talo 718 | T
a (1-a)q
1 ! 0 ul?
< ——log (Jm :LI oy ) (3.115)
1-1 [ull7a ) 1- || 17

O
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Remark 3.35. In the Abelian (Euclidean) case G = (RY,+), we have Q = N and
l“|=11g (|- |g is the Euclidean distance), if s — 1~ and from (3.11]) we get the
logarithmic Sobolev inequality in [30].

3.6.4. Fractional Logarithmic Caffarelli-Kohn-Nirenberg inequality. Now we present
the fractional logarithmic CKN type inequality on homogeneous groups.

Theorem 3.36 (Fractional Logarithmic CKN inequality). Under the assumptions of
Theorem 5.18 with

a=0F=pu, 1<qg<p’', 1<p<@Q, Pp+Q >0, Bg+Q >0, (3.116)

there exists a positive constant C' such that

I aq|q, | 1 -
(‘xcl llg) log |IL [ul dr < 7 log [Z] o , (3.117)
c lllzl*ul[ 7o) [zl ul|Z g 1-2 Hz|*ul|Zeg)

for all measurable and compactly supported u.

Proof. By taking a = =  in the assumptions of Theorem 3.18, we obtain that
1 1—
=242 (3.118)
T p* q
From the last fact with ¢ < p* we have ¢ < 7. By combining these facts with weighted
logarithmic Holder’s inequality and o« = 8 = v we get

oq q aq q xau qT
—'xL |ZL| log —|$(|l |Z| dx S—T log —“| |a Hq ©
e llzl*ullzq, llz]*ul () T—q w70 e

[ (I-a)q
u T~ u
S T log (Ca[ ]spa||| | HLq(G )
q

T |H:C]auHLq(G)
u q
_ aT lOg O [a]s,pc,]oc
T—q || uHLq(G)
(3.119)
Since a = = 7, we have
@w P (3.120)
T—q P"—¢q

O

3.7. Hardy-Littlewood-Sobolev inequality. In this section, we show Hardy-Littlewood-
Sobolev inequality. We prove this inequality by using Marcinkiewicz interpolation
theorem.

Let us consider the integral operator

Iy u(z /|y_1 B dy, 0 <A <Q. (3.121)

Note that when () > o > 0 and A = @ — a we get the Riesz potential I || = Ig_qa,|-
First we give a short proof of a version of the Hardy-Littlewood-Sobolev inequality
on G.
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Theorem 3.37. Let G be a homogeneous group of homogeneous dimension ) and let
| - | be an arbitrary homogeneous quasi-norm on G. Let 1 <p < g < oo, 0 < A < Q,

é — % =+ % —1, and u € LP(G). Then we have

I ullzae) < Cllullzee), (3.122)
where C' is a positive constant independent of u.

Proof. As in the Euclidean case we will show that there is a constant C' > 0, such
that

m{x: |K xu(z)| > (} < C|| H 3 (3.123)

where m is the Haar measure on G, K(z) = |z|™* and I, | ju(z) = K = u(z), where
% is convolution. By using the Marcinkiewicz interpolation theorem we will prove
(3.122). Let K(z) = Ky(z) + Ky(x), where

K if < K if
Ki(x) := (91:), i o] < p and Ks(z) := (a:'), i Jal > p (3.124)
0, if |z| > p, 0, if |z| < p,

p > 0. Then, we have I |ju(z) = K * u(x) = Ky * u(x) + Ky x u(x), so
m{z : |[K xu(z)| > 2¢} <m{z: |Ky xu(x)] >} +m{z: | Ky xu(x)| > ¢} (3.125)
Therefore, it is enough to prove inequality (3.123) with 2¢ instead of ¢ in the left-

hand side of the inequality. Without loss of generality we can assume ||| rr@) = 1
and by using Chebychev’s and Minkowski’s inequalities, we get

Ky * ulPdx
m{x: |Ky*xu(x)| > (} < le*U|>< lgpl |
||K1 * u||Lp(G \IKl\Iﬁl(G)IIUWEP<G) _ 122 (3.126)
= Cr ¢r S |

By combining (2.11) and (3.124), we have

w
Kl = [ lal o= ["r0 0 [ 1yl do)
0<|z|<p 0

G] _ S _
=11 [ 19 = gL = gL, (az)

where |G| is the dimensional surface measure of the unit quasi-sphere &. By using
last fact in (3.126), we get

(3.128)

S| \? u@Np
Q—A) .

miz : |Ky xu(x)] > (} < (
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Then, similarly from Young’s inequality, (2.11) and the assumptions, we obtain

1

() ;o . o
K+ = < Kallp ol = [~ r7r@tar [y da<y>)
o (G}

1 (6L e
(=) e

_ |6| )p/( > Q)\p—l )
(Q—Aﬂ A ar

_ (A;f?cg)p W5, (3.129)

—A=Q(1 - }10 - %) = —% Moreover,

since from the assumptions, we get QA ’\p =

1

if (Af‘@)p ;f? = (, then pu = ( pre )
Hence, we have m{x : |Ky *u| > (} = 0. From these facts with (3.125), ||u||r@) =1
and the assumptions we get

P (Q-Np
m{:p:|K*u|>2C}§< ] ) a

)
P’
4,

Qp’

%, so we have || Ky * ul|p~@) < ¢

Q—A ¢r
B < |6| » |6| _q(%;f‘)? Cw C’C —(Q— A)pq CC(%_I)pq_p
S \Q-X) \Ww-Q
ul|?,
— O((*—f)pq P = COePaTP = C“”{% (3.130)

For completeness, let us recall two well-known ingredients.

Definition 3.38 ([06]). Let 1 <p < o00,1 < ¢ <ooand V : LP(G) — LYG) be a
operator, then V' is called an operator of weak type (p,q) if

7quw4>ggc(m%?@y,c>m (3.131)

where C' is a positive constant and independent by wu.
Let us also recall the classical Marcinkiewicz interpolation theorem:

Theorem 3.39. Let V be sublinear operator of weak type (pr, qr) with 1 < pr < qx <
00, k=0,1 and qo < q1. Then V is bounded from L*(G) to LY(G) with
1 1- 1 1-

_ STy, y _Tr.r (3.132)
p Do b1 g 4o il

for any 0 < vy < 1, namely,

Vullzae) < Cllullzre), (3.133)

for any u € L*(G) and C' is a positive constant.
By using assumptions é = % + % —-1< ;lw we have ¢ > p. According to Definition
3.38, Iy . ju is of weak type (p, ¢), so by using the Marcinkiewicz interpolation theorem,

we prove (3.122).
The proof of Theorem 3.37 is complete. OJ
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Remark 3.40. Under assumption of the Theorem 5.37 and h € LY (G), we have the
following Hardy-Littlewood-Sobolev inequality

where C'is a positive constant independent of u and h.

< Cllulle@) |l e @) (3.134)

3.8. Stein-Weiss inequality. In this section, we show the Stein-Weiss inequality
on homogeneous Lie group. For showing this inequality we need some preliminary
results as the integral version of Hardy inequalities on general homogeneous groups
and Proposition 2.6 which is play key roles in our proof. Firstly, let us show the
integral version of Hardy inequalities on general homogeneous groups.

Theorem 3.41 ([32]). Let G be a homogeneous group of homogeneous dimension Q)
and let 1 < p < q < oo. Let W(x) and U(z), be positive functions on G. Then we
have the following properties:

(1) The inequality

</«; (/BW) f(z)dz>q W(x)dx)é =G (/G f"(l’)U(x)dx) ’ (3.135)

holds for all f >0 a.e. on G if only if

Ay = sup (/ W(a:)dm) ' (/ Ul_p/(x)dx) " <. (3.136)
R>0 \JG\B(0,|z|) B(0,]z|)
(2) The inequality

=

(/G (/G\B(O,xn d (Z)dz)q W(“’“)d“’); <Gy ( /G fPa)u (:v)d:c>; , (3.137)

holds for all f > 0 if and only if

1
o

Ay :=sup (/ W(a:)da:) ' (/ Ul_p,(x)dx) " < . (3.138)
R>0 \JB(0,|z|) G\B(0,|z|)
(3) If {C;}2_, are the smallest constants for which (5.135) and (3.137) hold, then

A, << () pids, i=1,2. (3.139)
Now we formulate the Stein-Weiss inequality on G.

Theorem 3.42. Let G be a homogeneous group of homogeneous dimension () and

let | - | be an arbitrary homogeneous quasi-norm on G. Let 0 < A < @, 1 < p < o0,
Q Q 1 _ 1, abf+r 1,1 1,1

a <, b < o a+ >0, s = p T 0 1, wherep—i—p, =1 andq—i—q, =1. Then

for 1 <p <q < oo, we have

I ull ooy < Cllelul oo (3.140)

where C' is positive constant and independent by u.
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Proof. Let us define

q
ALl = )N R A 3.141
where
q
uly
¢ \/B(0, ) Yy
() '
12:/ / 6“ Yy de, (3.143)
G \/B(02[z)\B(0,12]) |z|Py~tx|
and
u(y) !
I :/ </ —) dx. 3.144
’ G \JG\B(0,2|z|) |z|Py~Lz | dy ( )

From Proposition 2.6 we can suppose that our quasi-norm is actually a norm.
Step 1. Firstly, let us consider I;. From Proposition 2.6 and the definition of the

quasi-norm with |y| < %, we obtain

= !

| = |2 2 yy~

<z 'yl + [y =y 2|+ Jy|

<yt m
<y~ al+ 3

For any A > 0, we get
2| >y~

Therefore, we get

h= /G </B(o,'§") |95|;L|?5—%)1$|’\dy>qu = 2)\/(} (/B(o,;) \z&yjkdy)qu
_ o /@ ( /B . u(y)dy)q o[~ Bady. (3.145)

2

Assume that W (z) = |2|~¥*Y9 and U(y) = |y|*? and if condition (3.136) in Theorem
3.41 is satisfied, then by (3.135) we have

q
I < 2)‘/ (/ . u(y)dy) ||~ BNy < Chlllz|*ul| T )- (3.146)
¢ \ /B0,

Let us check condition (3.136) with W (z) = |z|~¥*Y% and U(y) = |y|*?. By the
assumption we have o < z%’ then

l<-4+E2 — 1=+ -4+ " 1=
q p Q D Q p Q

?

L1 a4ftr | 1 248+ 1 1 B+ B+ A
Q
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that is, @ — (5 4+ A\)g < 0 and by the using polar decomposition (2.11):

1 1
(/ W(a:)dx) f o (/ ]x\w“)qu) '

G\B(0,|z|) G\B(0, le)

(/ / Q-1,.—(B+X) qdrda ) (|6|/ —(/3+A)qdr) < CRQ e

(3.147)
From a < %, we get
ap(1=p)+ Q> ap(l—p) +ap’=ap+ap/(l —p)=ap—ap=0.
Finally, ap(1 — p’) + @ > 0. Then, let us consider
% L
(/ Ulpl(l‘)dl’) _ (/ |x‘(1p/)o¢pdx)
B(0,]z|) B(0,|z])
(/ / (=p)erp Q@=L drdo (y )) " <o (IGI/ p(i=#)eptQ- 1d7~>
(I1—p )ap —ap’
<CR V" = orRST. (3.148)

Moreover, the assumptions imply

1
q , ( )q ap
Ay =sup (/ W(x)da:) </ yUt-»r (x)dx) < CRQ B+ +Q
R>0 \JG\B(0,|z|) B(0,]=[)

1 atB+A
e T

— OROG~ = (C < oo,
where C'= C'(a, 8,p, A) is a positive constant. From (3.135), we get

q
I < C/ / u(y)dy | |z|~ PV < Chlllz|*ul| 7 c)- (3.149)
G \/B(o,'g)

Step 2. Similarly with the previous case I, now we consider I3. From 2|z| < |y],
we have

e

N=lytea™ < |y 'a| + |z]

lyl
2 Y

yl =1y~
<ly 'z +

that is,
ly|

= <y el

Then, if condition (3.138) with W (z
we have

q
4 [ L 825780 42 ([ g )
G \JG\B(0,2|z|) 2|yl G\B(0,2|z|) 2|7y

:C/ (/ u(y)!y\‘*dy) x|~ dx < C|l|a]*ull?, gy (3.150)
G \JG\B(0,2|z|)

= |z|7%% and U(y) = |y|(®*tMP is satisfied, then
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Now let us verify condition (3.138). Then, we get

(/B<o,|x>W(x>dx); N </(0 » |x|6qd$)é
</ / P9 drdo (y )) < CR%. -

(/ Ul—p( )d:p) - </ |x|(a+/\)(1—p’)17dx)
G\B(0;]z]) G\B(0,]z])

1
Y

</ / QAN A= o (y )) < CRQipp(’aH), (3.152)

where from 3 < %, we get Q — p'(a+ A) < 0.
By using these facts we have

where (Q — B¢ > 0, and

3 e

S

Ay := sup (/ W(x)dx) ' (/ Ul—P/(a:)dx) <R Qe 4
R>0 \JB(0,|z|) G\B(0,|z|)

= ORI _ 0RO < o0, (3.153)

where C' = C(a, 8, p, A) is a positive constant. Then we establish

13:/ (/ %dy)qugCHMPuH%p(m. (3.154)
G \JG\B(0,2|z|) 2| Py |

Step 3. Let us estimate [ now.
Case 1: p < ¢q. By 5 Byl < 2|z], we get

3,

Iz x| + z 3
vy~ \<‘| ’Z/‘_u+‘y_|<_|y|’

2 - 2 2 2 72

that is,
|y~ < 3lyl.
For all a + 8 > 0, we have
ly~ |t < 30|y P = 30y oy | < 302 Py |

Hence,

(v) '
u
G \/B(0.2z)\B(0,12) ||y~ to|
q
ly|“u(y)
<C / / B O R
( B(0,2]z])\B(0,12) ly~ 195|O‘+B+’\
<c W) N G — Ol
Gy~ 1a:|a+6+A dy = Cllata+s, Ul La(g)

where 4(x) = |z|*u(z).
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From the assumption é — % = >‘+g—+ﬁ —1<0, we get @ > XA+ «a+ [ and by using

Theorem 3.37 with p < ¢, we obtain
I < Clllxass @l gy < Clllltygy = Clllal®ulllyg (3.155)

Case 2: p = q. Let us decompose I as

P
u(y)
ez J 2P <[x|<2k 1 B(0,2|:c|)\B(0,7) Y

By |z < 2ly| < 4]z] and 2F < |z| < 281 we get 2871 < |y| < 282 and 0 <
ly~tz| < 3|z| < 3. 28+

By combining Young’s inequality with % + % =1+ % (our case p = ¢, hence r = 1),
we get

p
3 u(y)
I = / / ——dy | dx
’ ok <[] <2k +1 ( B2 )\B(0,2) |77 |y~ =] >

kEZ

u(y) "da
=> LW 3
o J2k<lal<2h 1\ JB(0212))\B(0,2]) ly~tz| ||PP

<D 27 |us xppercpyeaniny * 2] M g
keZ

<D 271l Xospiaar ey [ gl - Xqar-rcpi<ar 2y 1 Taey
keZ

<O 29wy qpyaoriny o) = C D 27 lu - Xqarrcpyconizy g

k€EZ kEZ
= C Y 1127w xpargieamey oy < C Y Iyl u - Xqoeor cpyi<arey o g
kEZ keZ

= Ol ull7, -
Theorem 3.42 is proved. 0]

Remark 3.43. With assumptions Theorem 3.42 and h € Lq/(G), we have the fol-
lowing Stein-Weiss inequality

u(y)h(z)
dzdy| < Cllullce@) 1Pl Lo @) 3.157
/G’a;‘ﬁ’ylxpwa [ull o) [ 2] (G) ( )

where C'is a positive constant independent of u and h.

Remark 3.44. In inequality (3.140) with o = 0 we get the weighted Hardy-Littlewood-
Sobolev inequality established in [32, Theorem 4.1]. Thus, by setting o = = 0 we get
Hardy-Littlewood-Sobolev inequality on the homogeneous Lie groups. In the Abelian
(Euclidean) case G = (RN, +), we have Q = N and | -| can be any homogeneous
quasi-norm on RY | so with the usual Euclidean distance, i.e. |-|=| - |z, Theorem
3.42 gives the classical result of Stein and Weiss.
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3.9. Logarithmic Sobolev-Folland-Stein inequality. In this section, we present
the logarithmic Sobolev-Folland-Stein inequality on stratified groups. Let us recall
the well-known Sobolev-Folland-Stein inequality.

Theorem 3.45. Let G be a stratified Lie group and 2 C G be an open set. Then
there ezists a constant Cs = Cs(G) > 0 such that for all u € C§°(§2) we have

|l Lo (@) < Cs </ |VHU\pd$) , 1<p<@Q, (3.158)
Q

where p* =
dimension of

%. Here Vi 1is the horizontal gradient and @) is the homogeneous
G

Now let us state the logarithmic Sobolev-Folland-Stein inequality on stratified

groups.

Theorem 3.46. Suppose that p* = 5—92 and a > 0. Then

u\x
2/ |u(x)\2ln#dx+Q(l+1na)|\u\|iz(G) < QC3alVeultay,  (3.159)
G

ull 2

where u € Sy (G).

Proof. By a direct calculation with € > 0, we have

2 [t e = 2 [ (L) i

_ i [ juter m( [u(@)] )d

€ G HUHLQ(G) HUHLQ(G)

(3.160)

From Jensen’s inequality we obtain the upper estimate for the integral:

2 U 2 €
2 [ o 0L i) [ Juta) m( LT
HUHL2 € G llullZs |l 2@

SQHUH o ([ s ) (3161

2(5 + 1)HUHL2(G) In ||u||L25+2(G)

€ HUHQL2(G)
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From the inequality Inz < ax—In(a)—1 for all a,z > 0, and by choosing 2¢+2 = %
as well as using the Sobolev-Folland-Stein inequality, we get

2 e+ D|ul? wl|?,.
2 [ o 1L (@), 2+ Dl Nl
|unL2<G : [l

< et Vil a”“"LZE*Q(G’ ~ () + 1)

N € HUHLZ(G)
2(e+1)

= 2= (allullfaesne) — (@) + ulfae))
2(e+1)

< 2 (aCBIVeulfae — (n@) + Dl )

2Q
. QT (aC3IVeulae) — (n(a) + 1) ullse )

Q-
= Q ( aC3|Veulfa) — (@) + ljulfz)
(3.162)
It yields that

2 | |u<x>|21n%da:+cz<m<a>+1>||u||%2(@,) < C3Qu|Veultg).  (3.163)
G 2

O
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4. REVERSE INEQUALITIES

In this chapter, we show reverse integral Hardy inequality on metric measure space.
We show the reverse integral Hardy inequality in two cases. In the first case we
consider the case ¢ < 0 and p € (0,1). In the second case, we consider the case
—o0 < g < p < 0. For the both cases we also obtain conjugate reverse integral
Hardy inequality. In the first case, as consequences we show the reverse integral
Hardy inequality for the homogeneous Lie groups, hyperbolic space and Cartan-
Hadamard manifolds. Also, we show reverse Hardy-Littlewood-Sobolev and Stein-
Weiss inequalities for the both cases. In addition, we obtain Hardy, LP-Sobolev
and LP-Caffarelli-Kohn-Nirenberg inequalities on homogeneous groups with radial
derivative.

Firstly, we need to give some preliminary results of this chapter. Let us recall
briefly the reverse Holder’s inequality.

Theorem 4.1 ([35], Theorem 2.12, p. 27). Let X be metric measure space. Let

p € (0,1), so that p/ = p%l < 0. If non-negative functions satisfy f € L*(X) and

0 < [; g% (x)dz < +o0, we have

[ st = ([ fp<x>dx)’1’ (/ gp’<x>dx);'. (41)

Let us give the reverse integral Minkowski inequality (or a continuous version of
reverse Minkowski inequality) with ¢ < 0 on metric measure space.

Theorem 4.2. Let X, Y be metric measure spaces and let F'= F(z,y) € X XY be a
non-negative measurable function. Then we have

[/X (/YF(x,y)dy)qur > /Y (/XF‘I(:K,y)dw);dy, q<0. (4.2)

Proof. Let us consider the following function:

Az) == /YF(a:,y)dy, (4.3)
so we have

A9(z) = ( /Y Flz, y)dy)q | (4.4)
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By integrating over X both sides and by using reverse Holder’s inequality (Theorem
4.1), we obtain

/X A% () = /X AT (@) A(r)da
_ /X A7 () / Fla, y)dyda

— /Y /X Aq‘l(:;F(x,y)dwdy (4.5)

g—1

9 [ (o) ([

Y
g1 1
= ( Aq(x)dx) ' / </ Fq(x,y)dx>qdy.
X vy \Jx
From this, we get

UX (AF(x,y)dy>qu]é Z/Y(/XF(](Ly)dx)édy, (4.6)

proving (4.2). O

Remark 4.3. In our sense, the negative exponent ¢ < 0 of 0, we understand in the
following form:

07 = (+00) % = 400, and 0% = (+o0)? = 0. (4.7)
We denote by B(a,r) the ball in X with centre a and radius r, i.e
B(a,r) ={r e X:d(z,a) < r},

where d is the metric on X. Once and for all we will fix some point a € X, and we
will write

||, == d(a,x). (4.8)

4.1. Reverse integral Hardy inequality with ¢ < 0 and p € (0,1) on the
metric measure space. Now we prove the reverse integral Hardy inequality on a
metric measure space.

Theorem 4.4 (Reverse integral Hardy inequality). Suppose that p € (0,1) and q < 0.
Let X be a metric measure space with a polar decomposition at a € X. Assume that
u,v > 0 are locally integrable functions on X. Then the inequality

Ux (/B<a,|za) / (y>dy)q“(”7)df”r > C(p.q) ( /X fp(w)v(w)dx); (4.9)

holds for some C(p,q) > 0 and for all non-negative real-valued measurable functions

f, if and only if
(/ vl—P'(y)dy) p/] : (4.10)
B(a,|z]a)

0 < Dy :=inf [(/ u(y)dy)
e7a | \IX\B(a,zla)

Q=
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Moreover, the biggest constant C(p,q) in (4.9) has the following relation to D;:

_1 _ 1
p/ q q /
Dy > Clpa) > (p,+q) (p,+q) D.. (4.11)

Proof. Let us divide proof of this theorem in several steps.
Step 1. Let us denote g(z) := f(x)v%(x) Let i—l—ﬁ =1 ac¢€ (O,—ﬁ) and

z(z) = v_%(x). Let us denote,

Vix) = U_% dy = 2 (y)dy, 4.12
() /B( " (y)dy /B(a’ma) (y)dy (4.12)
Hi(s) :—/Z A(s,0)g(s,0)z(s,0)do, (4.13)
Hy(s) ::/Z A(s,0)2" (s,0) V' (s,0)do, (4.14)
Hs(s) ::/Z A(s,0)gP(s,0)V (s, 0)do, (4.15)
U(r) ::/Z A(r,w)u(r, w)dw. (4.16)

By using reverse Holder’s inequality (Theorem 4.1) with polar decomposition (2.31),

we compute

X (/B ol ) )q“(i)dx - /X ( /B el g(yiziy)dy)qu@)dx

/(/B " )9 )2 y>dy) (f (awa)g(y)z(wy) u()da
(
v

/x /B(a @la ) )V (y)z (y)dy>7’ </B(a7$|a)g(Q)Z(y)C@/)q_pu(w)dm
/X Blattl) p(y)dy) (/B(a,ma) 2 (y)Vr (y )dy)p’
(/B(a j2la) )dy> ; u(x)dz
/OOU </H1 ) (/H2 >

v

X

P
Y

([ o)

(4.17)
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Let us denote by Hy(s fZ (s,0)do. Then we obtain

P
/

([l ([ )
([ L o (// i) s
= ([ (/ o) ) N
()" ([0
" ((/ Aow) |;>5

P
Y

\\ﬁ

M
1+ap'>0 1 p(/ﬁ()dp> ¥
(1+ap)» \Jo
p(tap’)
T ()
(I+ap )ﬁ’
where Vi(r fo H2 )dp. By combining this fact and reverse Holder’s inequality

w1thp+q p =1, we get

P
Y

A> /OO (/ H3(s)ds) U(r) (/ Hl(s)ds) o </O Hg(s)ds> dr
aw 1 (1+ap /(/ Hy(s )U(r) (/THl(s)ds)q_leW(r)dr
‘<1+Zp>/ o) ([ mons) 70 ([ s )0
( / ( / Hi(s ) (r)Vl(lt’ap)(r)dr>q

(1+ap
-Pp

([ (f o) ver) ™

\h

\\ws
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Q[

_(1+lp)5 (/ </ Hale > 1W(T)dT>

X (/X (/< f]a )g( v)ely )dy) u(z )dx> ’
o« f;pﬁ </° (/ Hals ) lw(r)dr)q.
Therefore,

" (1+(11p) </ (/ Fisto S) 1W(T)d7">q.

By using the reverse Minkowski inequality (continuous version of reverse Minkowski
inequality) with exponent % < 0, then we obtain

(/ooo vo) ([ Hg(s)d5> e (T)dr> ;
(] ooy )
([ ([ emon oners) )

< [ ([T )

a(1+ap’) %
= [ewve ([ wor S @) ay
X X\B(a,]yla)

> DP(a) /X 9*(y)dy,

Qs

1
where D(«a) = iI;f D(z,«a) = iI;f V=(z) <fX\B(a 2la) u(y)vq(Hap)( )dy) " and X is

the cut-off function. Then we have

A = ( / ( / G )dy>qu(a:)da:)q z% [ o
s L

Step 2. Let us deﬁne D in the following form:

0 < D; = inf [(/ u(x)dx> ' (/ vl_p/(y)dy) ’ ] . (4.19)
v#a X\B(a,z]a) B(a,|z|a)
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Let us note a relation between V and V;,

V(z) :/ v v d :/ 2P dx
B(a,|zla) B(a,|zla)

_ /O o /z r (1 w)A(r, w)drdew (4.20)

[zl
= Hy(r)dr
0

= Vi(|zla),

where, as before, Hy(r) = fZ . 27 (r,w)A(r,w)dw. Then let us calculate the following
integral: '

q(1+lap’)

[:/ u(y)vqu:?p)(y)dy:/ / A(r,wu(r,w)Vy 7 (r)drdw
X\B(a,|z|a) [z]a /32,

e8] q(1+lap’) o0 q(1+lap’) o0
_ / Uy, 7 (r)dr = / Vo (r)d, (— / U(s)ds)
|Il7‘a Ix‘a T

q(1+ap’)

-0 [ v,
4 q + op) /|oo (/Too U(s)ds) qu(l%wil(r)d\/l(r)

/
p Z|a

§>0 q(1+/ozp') 00
0w () /| U(s)ds

Z|a

1 / oo 00 a(l+ap’)
+W / ( / U(s)ds)v1 P R avi(r)
|z r

=vrﬂﬂa(/;U@mQL?%mm (4.21)

z|a

n w /| OO ( / h U(s)ds) Vﬁ (MV T (r)dVa(r)
q(1+ap)Di [

< DIV (|la) + Vi (r)dva(r)

jd |zl

N (14+ap)DI_ . 0
= DIV (|xla) + Oé—p,l‘/l q(r)hx\a

o . (1+ap)D} (1+ap/)DY
= DIV (|z]a) + JLim a—p,‘ﬁ I(r) — a—p,V} “(]7a)
(LrerhPf g (1+ ap/) D!

< DIV (|z]a) — —;1V1aq(|x|a>
ap
P 1

U2 pivea(s).

ap
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Then we get I = Dz, )V (z) < —QLP,D‘IZVO‘q(x). Hence,

it means
1
D(a) > (—ap') 4 D;.

Finally, we obtain

abz Dicor) (f f%y)v(y)dy)’l’ .

=

(=op)
(I+ap)P
(O, —I%). Firstly, let us find extremum of this function. After some calculation we

1
v where o €

H =

Let us consider the function k(a) := = (—ozp’)_é(l + ap')

have

A ) )

+ (—%) P+ ap) 7 H—ap))
L1 (M N a) (4.22)




65

After taking the second derivative of k(«) at the point ay and by denoting k;(a) =
1
(—ap) "7 (14 ap) 7, we get

k(o Y 1 _ /
dCEQ)‘a:al _ g( O{p/) q 1(1+ap/) Y l(a(p’+q)+1)) ‘Oc:oq
/
= (k1(a) (a(p' +9) + 1) | _,,
P (dki(a)
_E( T (@ +a) + 1) + (' + @)k () o,
" dky(« 4.23
e ﬁ\a:a (ar(p' +q) +1) +(p' + @)ki () (4.23)
q do 1 ~—
=0
’ /+ ’ /+ 1 1
:p(pq Q)k1< )= P Q)(_alp/) U1 )T
w; / -1 -L-1
_p(p+Q)( p )q ( q )P ~0
= - - )
49 \P +q L \P +q |
<0 =0 >0
It means, function k(a) has supremum at the point @ = «;. Then, the biggest

_1 _1
constant has the following relationship C(p, q) > (p,p—;q> ! (ﬁ) " Dy.
Step 3. Let us give a necessity condition of inequality (4.9). By using (4.9) and

/

flz) = v_%(x)x{(07t)}(|x|a), we compute

cwa<|[(f » f(y)dy>qu(x)dx]; ye K
-1/ ( / agtvl-p%y)dy)qu(as)das]; { /. v-p’<y>v<y>d4_’l’

:  (424)
2] (o) el [[_eswma]*
-1/ lmu(x)dxr [ /| laqv—ﬂ(yw@)dx] g
which gives D, 270 (p,q). 7 !

Let us give conjugate reverse integral Hardy inequality.

Theorem 4.5 (Conjugate reverse integral Hardy inequality). Suppose that p € (0,1)
and ¢ < 0. Let X be a metric measure space with a polar decomposition at a. Assume
that u,v > 0 are locally integrable functions on X. Then the inequality

[/x (/X\B(a,m) f(”dy)q“(f)dx]; > C(p.q) < /X fp(x)v(x)drc); (4.25)
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holds for some C(p,q) > 0 and for all non-negative real-valued measurable functions

f, if only if

1

0 < Dy := inf [(/ u(y)dy) ' (/ Ul_p/(y)dy)
r#a Bla,|z|a) X\B(a,|z|a)

Moreover, the biggest constant C(p,q) in (4.25) has the following relation to Ds:

e

] . (4.26)

1

Dy > Clp,q) > ( v )_i( a ) " Dy, (4.27)

P +q P +q

Proof. Proof of this theorem is similar to the previous case. Let us divide proof of
this theorem in several steps.

Step 1. Let us denote g(z) := f(m)v%(x) Let %—l—% =1, ac¢€ (O,—%) and
z(x) = vii(x). Let us denote,

Glx) = / o (y)dy = / 2 (y)dy.
X\B(a,|z|a) X\B(a,|z|a)

By using reverse Holder’s inequality (Theorem 4.1), we get

X (/X\B(a 2la) dy)q“i)df” - /X ( /X\B e 9(yiziy)dy)qu<x)dx
/</ ) ([ ) e
x

/X\B Jzla) 9(w)=(y >dy>q_pu(l’)dl’

= [oer ([ o) ([ o)

P
/

([ i)

(4.28)
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where U(r), H(s), i = 1,2,3, are defined in (4.13)-(4.16). Let us denote by Hy(s) :=
Js Al 0)2¥ (s,0)do. Then we have

_ / ) /Z X6.0) (5,9 ( / ) /Z ﬂpA(p,m)z”’(p,al)dpdm)ap/ dsdo) p/
([ ([ i) /ds>p, (4.29
(oo f o))
(L))
Lar'>0 m (— ([ mioar) \T)

S s

]

s

S N’ N

p(1+ocp )
1+ap’>0 '
:p> ﬂ </ H2 dp>
(1+ap)?
p(1+/ap )
_ Gl ()
(1+ ap )ﬁ’
where G4 (r f ﬁ p)dp. By combining this fact and reverse Hélder’s inequality
Wlthp+qp_1 we get

P
/

B> /oo (/OO H3(s)ds) U(r) (/OO Hl(s)ds>q_p (/OO HQ(s)ds) dr
ae) 1 (1+0¢p£’ / < / Hy(s )U(m ( /OOHI(s)ds>q_pr<1:'ap/) (r)dr
</ Hs(s ds) Hpap) </ Hy(s ) U dr
[ m ) UG <r>dr)

CORL

-Q\‘d

(14 ap’) p’/

\\'e

X(/o(
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IS}

Q

_<1+Lp>”f</ (/ Hys ) Wmdr)

: ( / ( /X\B( W)ty >dy) u@)dx) q
B (1fojp)p’ </0 (/ Hs(s ) W(ﬂdr)
Therefore,

B (1+(1)cp) (/ (/ Hy(s > Wmm)? (4.30)

From reverse Minkowski inequality with exponent 2% < 0, we obtain

</ (/ e ) 7 1”*) (T)dr>2
: </OOO (/ (6" )p(r)ds)qd)

_ ( [ ([ vt e >x{r<s}ds)gdr>
s /Ooo Hy(s) (/0 U(r)GW(r)dr) "o

q(14ap’) %
- [ #wa ) ( [ et <x>dm) dy
X X\B(a,|yla)

> DP(a) /X 9 (y)dy,

IS}

Q

SIS

| \/

S
Qs

Qs

1

~ ~ a(1+ap’) q
where D(a) := ir;f D(z,a) = ir;f G~ (x) <fB(a ol WG i (y)dy) and x is the
cut-off function. Then we obtain

Bi = fy)dy qU(ﬂf)dﬂf 52% 9" (y)dy
X \JX\B(a,|z0) (1+ap)? Jx

= —Dp(a)ﬁ /X fP(y)o(y)dy.

(1+ap)¥
Step 2. Let us define Dy in the following form:

0 < Dy = inf [(/ u(:p)dm) ' (/ vl_p/(y)dy) ’ ] . (4.31)
v#a B(a,Jz]a) X\B(a,z]a)



Let us note a relation between G and G+,
G(z) :/ v da —/ 2P dx
X\B(a,|z|a) X\B(a,|z|a)

/ / 2P (1, w)N(r, w)drdw
‘$|a

— [ ey

|]q

=: G1(|x],).

For |z|, < |y|., we have

Gr(|la) = /| T mdr> [ B = Gu(lyla),

za |yla

) > G(y). By 4 (Hap > 0, we get
q(1+ap ) q(1+gp')
. (z)dy > . )U(y)G 7" (y)dy,
B x

la)

it means G

and by using ¢ < 0, we have

D) =G ( [ - a6 iy
)

qg(14ap’)
> G () ( [ e
B(a,|zl|a)

Q=

Q|

Consequently,

it means

Finally, we obtain

=

Bq_ 1+ap 1/" (/fp )

Then, as in the previous case we have

(—ap)) @ PN a7
sup = (= / .
aE(O,—%) (1+ap)? r+tq D +q

69

(4.32)

(4.33)
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Therefore, we have that the biggest constant satisfies

_1 _1

pl q q p/
C(p,q) > Ds.
(v ) 2 <p’+q> (p'+Q> ’

Step 3. Let us give a necessity condition of inequality (4.25). By using (4.25) and

/

flz) = v_p?(x)x(t,oo)(|x|a), where x is cut-off function, we compute

s VX (/X\Bw,ma) f(y)dy> qu(x)dxr ( /X ! p(y)v(y)drc);
: [/X (/X\Bwvwla) f(y)dy>qu(x)dx]; (/x|a>t“"’/(y)v(y)d:r)_;

2 /. (f N v—’if<y>dy)qu<ac>dac}é (f N vp’<y>v<y>d:c)_’l° o
— Uﬂmvl‘p'(y)dxr [/ﬂaStU(y)d@/r,
which gives Dy > C(p, q). OJ

4.2. Reverse integral Hardy inequality with —oo < ¢ < p < 0 on the metric
measure space. Main results of this section we show the reverse integral Hardy
inequality and its conjugate in the case —oco < ¢ < p < 0.

Theorem 4.6. Assume that p,q < 0 such that ¢ < p < 0. Let X be a metric measure
space with a polar decomposition at a € X. Suppose that u,v > 0 are locally integrable
functions on X. Then the inequality

[/ (/B(a,x,a) / <y>dy)q“<l‘>dxf > Ci(p, q) ( / fp(rc)v(x)da:)” (4.35)

holds for all non-negative real-valued measurable functions f, if

1 1
0 < Dy = inf Dy(|z|,) = inf [(/ u(y)dy) ' </ vlp’(y)dy> ’ ] ,
v#a G B(a,|z[a) B(a,|z]a)

(4.36)
and D1(|z|a) is a non-decreasing. Moreover, biggest constant C(p, q) satisfies

1 1
Dy > Ci(p,q) > |pl«(p')? Dx, (4.37)
1 1 _
where 5 + o= 1.

Proof. Similarly to the previous case, let us divide proof of this theorem by steps.
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Step 1. Firstly, by denoting

Fu(s) = /z )75, ls )i (4.38)
Vis) = / A(s, )t (s, 0)do. (4.30)
= ( / t / )\(s,a)vl_p/(s,a)dsda)w, (4.40)
// (s, 0)v 5 (s, )0 (s)dods, (4.41)

Uy (1) = /Z Aol o (4.42)

By using the reverse Holder’s inequality with the polar decomposition, we compute

1

/ f(y)dy = / @)t ()h()][oF (9)h(y)]dy
B(a,|z|a) B(a

- (/B< Jola >(f(y>”’l’(y>h(y))pdy)p (/B(am)(vi(y)h(y))p/dy)é

(// hP(s)A\(s, o) f7(s, o)v (sa)dads)p

X (/OT /Za v‘i(S,U)hp/(S))\(&U)dadS> )
_ ( /0 ' hp(s>Fn(s>ds);Hfl’ (r).

(4.43)
Let us calculate the Hy(t), then we obtain
¢ ' ' (4.39) t /
:/ / A(s,o)v 7 (s,0)h7P (s)dods = / h™P (s)Vu(s)ds
0
440)/ </ / (z,w)0 7P (2, w dzdw) Va(s)ds
(4.44)

(439 /0 ( /O Vn(z)dz> an(s)ds
_ /Ot </0 Vn(z)dz>_; d, (/0 Vn(z)dz)
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\\H

([
20 ( /0 Vn(z)dz)p/

= p'hP(t).

By combining this fact in (4.43), we have

/B L Jway < /0 T h”(s)Fn(s)ds) CHP ) O () ( /O " 5\ Fu(o) ds) B,

(4.45)
by multiplying u, integrating over X with ¢ < 0 and by using (direct) Minkowski’s
inequality with % > 1, we compute

fo (o, ) st
-] vt w(// (5.0 samsda) s
@/ <// (5,0) sadsda> i
% [t [ o)
— )7 / 00 ([ vt )hi
< )7 [ | wene ([T vn? <r>dr) ds] |

where x{o,} is the cut-off function. At the same time, we can also estimate

</ot /ZJ A(s, o)vt 7 (s, U)dsdg> 5
([ vaow)| (4.47)

(4.46)

q

'S

ﬁ

”3

~|

Q

R
Iy

(4.39)




73

where Dy (|t|,) := (fo ) v (fot Ul(s)ds)g. By using this fact and non-decreasing
of Di(|zl],), we get

/X (/B(a,pca) f(y)dy)q u(z)dx
(426) ()" [/OOO hP(s)Fy(s) (/soo Ul(r)hg(r)dr)g ds] v

T [ | wenenl o ( [“oo ([ ) dr> % ds} %
—or? | | R eof ) ( [ o ([ i) ’1’] ) % ds] %

(4.48)

Finally,

(/X </B(a,m|a>f <y>dy>q“ "”) > [pl(p (/ f7(x ) . (4.49)

Hence, it follows that (4.35) holds with Cy(p,q) > \p[E(p’)?Dl proving one of the
relations in (4.37).
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Step 2. In this step we show the biggest constant satisfies C(p,q) < D;. Let us
denote by f(z) = v x(04(|2|s). Then we have

UX (/B(a’m”) f(y)dy)qum]; %20 V|m|a>t (/B(a,|x|a> f(y)dy)q“(“7>d$]f
B um (/waq“l_p/(y)dy)quw)dx} " (4.50)

and
cva) | [ fp(a:)v(a:)dx]’l’:cl(p,q) [ /| Iagtvlﬂy)dy] S s

By using above facts, we obtain

1
7

Ci(p.q) < [ /|y a<tv1_p'(y)dy]p [ / la>tu(x)dx] | (4.52)

Finally, we get C(p,q) < Dj. O

Q=

Then let us give conjugate integral Hardy inequality.

Theorem 4.7. Assume that p,q < 0 such that ¢ < p < 0. Let X be a metric measure
space with a polar decomposition at a € X. Suppose that u,v > 0 are locally integrable
functions on X. Then the inequality

Ux (/X\B(a,x|a) f@)dy)q“(x)dx]; > Ca(p.q) ( /X f”(ﬂf)v(ﬂf)dw) ' (4.53)

holds for all non-negative real-valued measurable functions f, if

0 < Dy = inf Dy(j],) = inf [(/ u(y)dy)q (/ vl-p/(y)dy)P] ,
z#a z#a X\ B(a,|z|q) X\B(a,|z]a)

and Ds(|z|a) is a non-increasing. Moreover, biggest constant C' satisfies
1,01
DQ > 02(p7 Q) > |p|q(p/)p,D27 (455)
1,01 _
where & + 5 = 1.

Proof. The main idea proof of this theorem similar with Theorem 4.6, except we
should use Dy(|z|,) is a non-increasing. O

4.3. Reverse Hardy inequality with ¢ < 0 and p € (0,1) on the homoge-
neous Lie groups. Then we have the following reverse integral Hardy inequality on
homogeneous Lie groups.
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Corollary 4.8. Let G be a homogeneous Lie group of homogeneous dimension ()
with a quasi-norm | -|. Suppose that ¢ <0, p € (0,1) and o, 5 € R. Then the reverse
integral Hardy inequality

[/@ </B(O,x|) f(y>dy)q madxr 2C (/@ fp($)|56!5dx);, (4.56)

holds for C' > 0 and for all non-negative measurable functions f, if only if

Q+a+Q+BO—M
q P

a+Q <0, B(1—p)+Q >0 and =0. (4.57)

Moreover, the biggest constant C' for (4.56) satisfies

(]a)?@!)é (Q+§1‘—p’)>; =¢ (4.58)

(150 (o) 65 %)
~ \la+Q)| Q+p(1—p) P +q P +q ’

where |G| is the area of unit sphere with respect to | - |.

Proof. Let us verify condition (4.10) with u(x) = |z|*, v(z) = |#|® and with a = 0.
By calculating the first integral in (4.10), we obtain

/ U(y)dyzf ly|*dy / / p? ! dpdo(w)
G\B(0,/x]) 6\B(O) o) Jo

— ’6| Q+a 1d Q+E<0 |6| ’ ‘Q+o¢ _ |6| ‘x’QJra
|| Q+a 1Q+a| ’
(4.59)

where |G| is the area of the unit quasi-sphere in G. Then,

)
. oy, (2.11) N o
/ vt ”(y)dyZ/ ly|P P dy = / /pﬁ“ ") p9 dpdo (w)
B(0a) B(0Jx) 0o Je
|

B ,
_ & / Q811 (4.60)
0
Q+6(1=1)>0 \?l )|x|cz+/3(1—p')_
Q+p1—p

+ Q+B(1 ) _

=0, we get

1

Finally by summarising above facts with Q“‘
(G} o Qta 4 Q+60-p")
( Sl )) infroo too

_ !6!)
DF_QQ+Q\ Q+p01—-p

- <|a|f|cz|); (mﬁ_p,))”' -0,

Q=
3

(4.61)
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From (4.11), we obtain

(ra‘f‘@!>;(@+ﬂ‘i‘—p'>> =¢

- (5%) (o) () %)
~ \Ja+Q)| Q+pB(1—p) P +q P +q ’

completing the proof. O

't!\‘ -

(4.62)

Similarly, we have conjugate reverse integral Hardy inequality on homogeneous Lie
groups.

Corollary 4.9. Let G be a homogeneous Lie group of homogeneous dimension () with
a quasi-norm | - |. Assume that ¢ < 0, p € (0,1) and o, € R. Then the conjugate
reverse integral Hardy inequality

U (/G\B(O,M) f <y>dy)q Ix\“dw} e ( / fp<x>1x|ﬂdx); R

holds for C' > 0 and for all non-negative measurable functions f, if only if

+ +A(1—pf
01050, B1—p)+0Q<0 and 21249 B;, P) g (4.64)
Moreover, the biggest constant C' for (4.63) satisfies
1 1
(ava) (oron=m) 2°
a _
1 p 1 1 1 (465)
> (%0) (@) 7))
“\e+Q/) \|Q+5(1—-p) P +q P+q
where |&] is the area of unit sphere with respect to | - |.
Proof. Proof of this corollary is similar to the previous case. ([

4.4. Reverse Hardy inequality with co < ¢ < p < 0 on the homogeneous Lie
groups. In this section we show the reverse integral Hardy inequality on homoge-
neous Lie groups.

Theorem 4.10. Let G be a homogeneous Lie group of homogeneous dimension )
with a quasi-norm | - |. Assume that ¢ < p < 0 and o, € R. Then the reverse
integral Hardy inequality

U </Bm,x') d <y>d3~/>q 'x‘“dx]é >0y ( / f%x)\xrﬁdxf S 4e)

holds for Cy; > 0 and for all non-negative measurable functions f, if a + @ > 0,
B(l—p)+Q >0 and Q;ra + Qw;,l_p) = 0. Moreover, the biggest constant C for
(4.66) satisfies

1 1 1

(a|f|é2>; (Q +6|(Z|—p'>)p/ 2012 ple ) (ﬁb)q (Q +§1|—p'>)pl |
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Proof. Let us check verify (4.36) with u(x) = |z|* and v(z) = |2|°. Let us calculate
the first integral in (4.36):

ja|
/ u(y)dy = / ly|*dy (LD / / r*rQldrdo
B(0,/]) B(0,J2)) o Je

4.67
|z S| ( )
= |(‘5|/ rQta—lgy @H2>0 |z |9Te
0 Q@+« 7
where |G| is the area of the unit quasi-sphere in G. Then,
||
/ o' (y)dy = / [y dy “2 / / P drd
B(0,]z) B(0,|]) o Je
|| /
= [&| / p@Hs0p) gy @A O] avan),
0 Q+p/(1-p)
(4.68)

=) — (), we have

Finally by summarising above facts with Q;“a 4 9P 1(?,1

1

[S] 3 |5 P [ @te, Q+sa-p)
Dufel) = (L55)" (g iol—s) [l
are I+5l-p) 1 (4.69)

%%)é(w;(@ﬂ—p/))pl’

it means D;(|z|) is a non-decreasing function. Then

. S| )( 8| )
D; = inf D = > 0.
1= Pl (a+@ Q+B(1—p)
Therefore, by (4.37) we have

—_

D, >C, > ]pﬁ(p')FDl,

1 1
where D; = (JE‘Q) ! <Q+5|(61Lp/)) ", completing the proof. O

Then we have conjugate reverse integral Hardy inequality on homogeneous Lie
groups.

Theorem 4.11. Let G be a homogeneous Lie group of homogeneous dimension @)
with a quasi-norm | - |. Assume that ¢ < p < 0 and o, € R. Then the reverse
conjugate integral Hardy inequality

JAVA, Wity o] o (f fp<a:>|x|ﬂda:); S )

holds for Cy > 0 and for all non-negative measurable functions f, if o« + Q < 0,
B(l—p)+Q <0 and Q;’a + Q+’B;,1_p) = 0. Moreover, the biggest constant Cy for

(4.70) satisfies
1 1 1

(m'f'@f (|@+fl|—p'>|>pl > Cy = |pli ()7 (m'f'@)q <|@+5|(61|_p,>|)p'-
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Proof. Proof of this theorem is similar to the previous case, but we need using The-

orem 4.7. ]

4.5. Reverse Hardy inequality with ¢ < 0 and p € (0,1) on the hyperbolic
space. Let H" be the hyperbolic space of dimension n and let a € H". Let us set

u(x) = (sinh |z],)*, v(x) = (sinh|z|,)”. (4.71)
Then we have the following result of this subsection.

Corollary 4.12. Let H™ be the hyperbolic space of dimension n and let a € H".
Assume that ¢ < 0, p € (0,1) and o, € R. Then the reverse integral Hardy
inequality

{/n (/wala)f(y)dy>q(sinh!x\a)“d:c1}1 > C( 5 fp(:c)(sinh\x|a)ﬁdx);’ (4.72)

holds for C' > 0 and for all non-negative measurable functions f, if

11—y 11
0<a+n<l, B(l—p')+n>0anda;—n+ﬁ( ;an?rﬁ (4.73)

Proof. Let us verify condition (4.10). By using polar decomposition for the hyperbolic
space, we have

1
7

o0 i |z]a / P
D = n;f < / (sinh p)a+"1dp> ( / (sinh p)?(-» >+"1dp> : (4.74)
TFa Ix‘a 0

If a+n < 1and 5(1—p')+n > 0, then (4.74) is integrable. Let us check the finiteness
and positiveness of the infimum (4.74). Let us divide the proof in two cases.
First case, |z|, > 1. Then sinh |z|, ~ exp |z|, if |z|, > 1. Then we obtain,

£ o

oo : [l , P
Di = inf (/ (sinh p)o‘+"_1dp) / (sinh p)PU=P)Fn=1q,
[Zla>1 \ J|z|, 0

v

00 % |z|a P
~ inf a+n—1d / B(l—p')—l—n—ld
ot ( /|x ‘a(exp p) p) ( i (exp p) p (4.75)

1
7

1 /
— it ((exp [la)* )7 ((expla]) )

|z|a>>1

i atn—1_ B(1—p)+n—1
= inf (explz|,) ¢ + % ,

|z|a>>1

infimum of the last term is positive, if only if 0‘*271 4 80=p)in=l 5 0 e, O‘T:" +

p
BAZPDEn > 1 4 L then DI > 0.
p q p
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Let us consider the second case |z|, < 1. For |z|, < 1 we have sinh pro<,<(al,} = p,
then we calculate

o i [ rlala ,
inf (/ (sinh p)a+”1dp> / (sinh p)P1=P)n=1q,
|zl |2]a 0

R 0
~ inf (/ (sinh p)*™tdp —|—/ (sinh p)a+”_1dp)
|

|x|¢l<<1 I‘a R

1
o

1

|z|a . p’
(/ pﬁ(l—p )+n—1dp>
0

R o0 % ,8(1—p//)+n
~ inf </ (sinhp)o‘+”_1dp—|—/ (Sinhp)o‘+"_1dp) P
|

|(E|a<<1 x‘a R

Q|

(4.76)

Similarly, for small R we have sinh py,|,<,<ry = p, so that we obtain

1
7

00 % |z|a ) P
inf (/ (sinh p)a+”1dp> / (sinh p)?1=P)Fn=1q,
1zla<<l \ S|z, 0

R 0o % ﬁ(l—p{’)-ﬁ—n
~ inf (/ (sinhp)“*"_ldp—l—/ (sinhp)o‘+”_1dp) A P
|

‘$|a<<1 mla R

R 00 ﬁ(l—zi'H—n
~ inf (/ po‘+"_1dp+/ (sinhp)o‘+”_1dp) |zla ”
\

‘$|a<<1 x|a R

1 Ba=pHn
~ inf (|z[¢"" 4+ Cgr)7 |z]a *
|z]a<1

(4.77)

Q=

If « +n >0, we have % < 0, then we get

1

00 % |z|a , p’
D? = inf (/ (sinh p)o‘+"_1dp) / (sinh p)PU=P)n=1q,
1Zla <<l \ J2], 0

/3(1—1)/')+n

P (4.78)

ESE

~ 3 a+n
~ |z1‘il<£1 (|{L‘|a + CR)

/3(1—:0/')+n

~ inf |z|, 7 > 0,
|z[a<1

and infimum is positive, if only if B(l_p—w <0,ie., Bl —=p)+n>0. O

Let us give the reverse conjugate integral Hardy’s inequality in hyperbolic spaces:

Corollary 4.13. Let H" be the hyperbolic space of dimension n and a € H". Assume

that ¢ < 0, p € (0,1) and let o, 5 € R. Then the reverse conjugate integral Hardy
inequality

U (/X\B(“ . )ﬂy)dy)q o 'x‘“)adm} 2o ( [ (@) (sind |x|a)5d$>; ,
: (4.79)
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holds for all non-negative measurable functions f, if

1-9p 1 1
a+n>0, 1>8(1-p)+n>0 and&+n+ﬁ( 1?)—1—712__’__/.
q p q p

Proof. Similarly to the previous case, check condition (4.26) and then, we have

1

|z]a q o0 Y
Dy = ir;f (/ (sinh p)a+"_1dp> (/ (sinh p)ﬁ(l_p,H”_ldp) . (4.80)
T#a 0 |Z]a

If «a+n>0and (1 —p)+n <1, then (4.80) is integrable. If |z|, > 1, we obtain,

00 % |Z|a ) 4
D) = inf (/ (sinh p)a+"_1d,0) / (sinh p)?=P)Fn=1q,
1zla>1 \ Jz, 0

E3 v

oo 7 |z|a P
~ inf atn—17 / B1=p")+n—1 4
fela>1 </|“(6pr) p) ( | (expo) P (4.81)

1
o

l /
= inf ((eplel)" ™) (lexplal) )

|z]a>>1

. atn—1, B1—p)4+n—1
= inf (explz|,) ¢ + I ,

|z|a>>1

infimum of the last term is positive, if only if a+2_1 + B(l_pz/z2+n_1 = 0, Le, C%rn *
BU=p)tn 5 1 4 1 then DI >0
I —q p T '
If |z|, < 1, we obtain

1
7
1

|z|a % oo >
inf / (sinh p)**™"dp (/ (sinh p)ﬁ(l_pl)”_ldp)
|zl 0 |Z|a

1
|z|q q R ) 00 ) o
~ inf / P dp (/ (sinh p)PU=P)*n=1q, 4 / (sinh p)P1=P )+”1dp>
|lzla<<1 \ Jo ER R

1
+n

p’ atn
q

R / > / p
~ inf </ (sinh p)PU=P)Fn=1q, 4 / (sinh p)#1-» )+"1dp) |7]a
[Zla<t \ S |2q R

(4.82)

Similarly, for small R we have sinh py,|,<,<ry = p, so that we obtain

|2]a 7 00 o
inf / (sinh p)*™"dp (/ (sinh p)ﬁ(l_p/)Jr”_ldp)
lzla<1 \ Jo |z]a

1

R , oo , » o atn
~ inf (/ (sinhp)ﬁ(l_pH”_ldp—l—/ (sinhp)ﬂ(l_pH”_ldp) |z]q
|z|a<1 |Z]a R
, L ayn
~ inf (|x|f(17p)+"+0§%)q|m\aq :
|zla <1

(4.83)
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If (1 —p')+n >0, we have Lﬁ’l)m < 0, then we have

1
7

1
|z|a q 00 ) »
D3 = inf / (sinh p)*™" 'dp (/ (sinh p)?(-» )+”1dp)
lzla<<1 \ Jo [2]a

L atn
~ inf <|x|5(1_1!2 )+ 4 C&) " zfa e (4.84)
|z|a <1
atn
~ inf |z|.? ,
|z]a<1
and infimum is positive, if only if QT*" <0,ie,a+n>0. O

4.6. Reverse Hardy inequality with ¢ < 0 and p € (0,1) on the Cartan-
Hadamard manifolds. Let (M, g) be the Cartan-Hadamard manifold with curva-
ture Kpy. If Kpy =0 then J(t,w) =1 and we set

u(z) = |z|%, v(z) = |z|?, when K = 0. (4.85)

. n—1
If Ky <0 then J(t,w) = (%) and we set

u(z) = (sinh /—Ky|z|)®, v(z) = (sinh /—Ky|z|,)?, when K <0. (4.86)
Then we have the following result of this subsection.
Corollary 4.14. Assume that (M, g) be the Cartan-Hadamard manifold of dimension

n and with curvature Ky;. Assume that ¢ < 0, p € (0,1) and o, f € R. Then we
have

i) if Ky =0, u(x) = [xl3, v(x) = |7, then

UM (/B(a,x|a) f(y)dy)q |”“"|3dxr =0 (/M f”(w>|€clﬁdw);, (4.87)

holds for C > 0 and for non-negative measurable functions f, if only if a4+n <
0, B(1—p/)+n>0 and "2 4 MO — 0
i) if Ko =0, u(z) = |z[3, v(z) = [z, then

UM (/]\/[\B(mlxa) f(y)dy)q |x’adm]; 2C (/M fp($)|ff|6dx); : (4.88)

holds for C' > 0 and for non-negative measurable functions f, if only if a+n >
0, B(1—p) +n < 0 and ke + =H02) o,
i) if Ky < 0, u(x) = (sinh /= Ky|z|o)®, v(x) = (sinh|z|,)?, then
1

[(/f » Py ) (s /= Rglel |
> ( /M f7(x)(sinh @|xra>ﬁdx);> (4.89)

holds for C > 0 and for all non-negative measurable functions f, if 0 < a+n <
17 6(1_p,)+n>0 and"%r"—kﬁ(l’—fj)“l>l+ 1.

P —q p'’



82

iv) if Ky <0, u(z) = (sinh /=Ky|z|)®, v(z) = (sinh /=K p/|x]a)?, then

(/] " iy ) (s =Rl
> C ( /M f?(x)(sinh @m)%);, (4.90)

holds for C' > 0 and for all non-negative measurable functions f, if a+n > 0,

1>B(1—p)+n>0and e 20plin > 1y 1

-

4.7. Reverse Hardy-Littlewood-Sobolev, Stein-Weiss and improved Stein-
Weiss inequalities with ¢ < 0 and p € (0,1) on the homogeneous Lie groups.
Now we formulate the reverse Stein-Weiss inequality on homogeneous Lie group.

Theorem 4.15. Let G be a homogeneous group of homogeneous dimension () > 1

and let | - | be an arbitrary homogeneous quasi-norm on G. Assume that X > 0,
p,q € (0,1), O§a<—§, O§B<—§, ?%—%:%ﬁﬁ—l—l where}—ljjtz%zl and

% + & = 1. Then for all non-negative functions f € LY(G) and h € LP(G) we have

[ [l taP @l dsdy = Ol Mloe. o
where C' is a positive constant independent of f and h.

Proof. By using reverse Holder’s inequality with é -+ % =1 (Theorem 4.1) in (4.91),
we calculate,

[ [l st@ et ands = [ ([ el otalyan ) siois

(4.1) w1 3 q %
> / / 2oy PRy ) dz ) 1l

For (4.91), it is enough to show that

.\
( / ( / |xra|y—1x|kh<y>|y|ﬂdy) d:c) > Ol

and by changing u(y) = h(y)|y|?, this is equivalent to

q
2|y~ e Puy)dy | de < Clllyl~Pullf, g
G G

/ 2]y Puly)dy > / 2y Puly)dy.
o 5(0,2))

(/G lealy‘lwIAU(y)dyy 7 (/B(o,;) lealy‘lfﬂIAU(y)de'

We have that

then



Hence, we get

([rer( [ w-lmwy)qu)é
= (/G [ (/B(o,l;) !y‘lxIAU(y)dyyd:r)q g

=1, (4.92)
Similarly with (4.92), we get

1
q q
(/ || (/ Iy‘lxIAU(y)dy> dzr)
G G
q<0 q % 1
S ( G ( / |y—1xvu<y>dy) dx)
G G\B(0,2z))

=17, (4.93)
By summarising above facts, from (4.92)-(4.93), we have

: 4.94
5 T (4.94)
actually a norm.

From now on, in view of Proposition 2.6 we can assume that our quasi-norm is

Step 1. Let us consider I;. From Proposition 2.6 and the properties of the quasi-
norm with |y| < %, we have

|z]
For any A > 0, we have

_ _ _ _ _ _ _ xr
| =zt = |z gy < a7yl + ly =y e+ Y] <y el + 5 (495)

27 < Jy )
It means,

2 [ i 0 < /

ly 'z uly)dy,
B(o2)

q q
[Pty ) <2 ([ Putay )
5(0.5) 5(0.5))
Therefore, we have

Ilz/(}|r|aq (/B(Om |y1wlAu(y)dy> dx
< 2—Aq/@|x|(a+/\)q (/]B(OM)u(y)dy) dr.

2

so that
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Assume that W (z) = |2|®*V9 and U(y) = |y|=?, if condition (4.10) in Theorem 4.4
is satisfied, then by (4.9) we have

q
I < 2 / / u(y)dy | |2 dz < CyllyPulL g,
G \ /B,

Let us check condition (3.136). From assumption 5 < — Q , we get

1+1_04+6—|—)\+2<a+)\ 1+2
p ¢ Q Q p

that is, (S;)‘ 4> 0, then Q + (a+ \)g < 0 and by using the polar decomposition

(2.11):
(/G\B(o,mn W(y)dy) -

(

-

= (IGI g e 1+(a+’\)qdr>q
(
(

_$|x|cz+(a+wq> !
Q+ (a4 A)g

S| i Q+(a+A)g
2] S

From £ < _z%’ we get

—pp(1 —p') +Q > —Bp(1 —p') — Bp’
It means —fp(1 — p') + @ > 0. Let us consider

0.

1
7/

(/B(O,|x|) Ul—P( )dy) B (/ B(0,]z|) \y! e dy)
/M/ A=) QL o (w ))

1
7

<|6,/x —~Bp(1—p)+Q— 1dr>p (4.96)
(
(

1
7/

1
|6‘ | | Bp(1— p)+Q)

i/ | |*3P(17P/)+Q
T P

L D)
|
=
=|—
=8
|
%\
N———
3



Hence, we get

1
A, = inf </ W(y)dx)q (/ Uy )dy)
27 \JG\B(0,/z]) B(0,[z])

1
I

Q=

( S| v inf |2] (a+>\q)q+Q+—5p(1;,p’)+Q
Q )

- (rmf‘ﬂ)qr) — Bp(1 —p/

g ( S|
Q — Bp(1 —p')

q
I < 2% / ICERY / u(y)dy | de <279 [y Pullt, g,
G B(0,12l)

1
17 2 27Cllyl Pl v = 22Ol bl e

85

(4.97)

(4.98)

(4.99)

Step 2. As in the previous case I, now we consider I,. From 2|z| < |y|, we

calculate u
_ Yy
lyl =Ty =y wa ™ < ly x| + [o] < |y~ 2l + 5
that is,
% < |y~ 'a]

Assume that W (x) = |2|*? and U(y) = |y|~®+YP and if condition (4.26) is satisfied,

then we have

q
n=[ ([ el autdy) i
¢ \JG\B(0,2/z))

q
< 2”/ B (/ U(y)!dey) dr < 2yl ullfs
. &\B(021x])

Let us verify condition (4.26). Then we get

(/B(vaD W<y>d’y)é = (/ - \y!aqdy)'l’
</ lml/ rr @ drdo ))

| q| |Q+aq
= T
Q+aq ’
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Q

where @) + aq > 0. By using a < —» we get

then

q/

By using this fact, we have

Combining these facts we have

Ay

1 a+p+A B+ A B+ A 1
=" 142< +—+2:—+1+—,
P Q g Q Q q
B+ +Q<0. (4.100)
</ Ul—p( )dy) — </ ly|~ B+N)(1-p pdy)
G\B(0, z|) G\B(0,|])
</ / Q— 1 —(B+N)(1-p’ pd?’do( )),
2
= <|6| = (BN (A-p)p+Q— 1dr)
lz|
(4.100) <_ S| |2 ‘Q (B+A)(1- p)p)l
Q—(B+AN1—-p)p
— <_%|x|Q+(B+A)p’ v
Q-+ B+ Ny
_ |&] o |x|Q+(lzj->\)P/
1Q+ (B+ Ny '
inf ( / W(y)dw)q ( / Uy )dx)
v7a \JB(0,x|) G\B(0,|z|)
8] \* S| o Qteq | QBN
f
(Q+aq G (B np)) il
Q;'aq f lQng k4 %#a . ) (4.101)
q P f Q _,'_i_,’_a—kg—k)\
<Q+aq> (|Q+<B+A>pf|> nf el
S|\ S| V(e gL esge)
f 7P Q
(@+aq ERCESV A
< ] )( ] >p>o

Hence, we have

I, =

q
( / |x|au<y>|y—1x|kdy) dr < 279G Iy Pult, e,
G\B(0,2|z])
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Then, we have
I > 272Gy |y~ Pull o ey = 272 Call bl o) (4.102)
Finally, from (4.99) and (4.102) in (4.94), we obtain

q L ]q ]q
( [t ( / |y1xm<y>dy) dx) L
- - 2 9

2_>\(Cl + CQ)

-8

> 5 Iyl ullere)  (4.103)
2_)‘<Cl + CQ) _

= —— ¥l ulloe)

= Csllly| ™ ull r(g),

where Cy = 22

Theorem 4.15 is proved. 0

Corollary 4.16. By setting a = [ = 0 we get the reverse Hardy-Littlewood-Sobolev
inequality on the homogeneous groups, in the following form:

/G / e ) dedy > Ol 1Ml (4.104)

for all non-negative functions f € LY(G) and h € LP(G) with A > 0, p,¢ € (0,1),
$+%:%+2, where%—l—}%:l and%%—&:l.

Remark 4.17. In the Abelian (Euclidean) case G = (RN, +), hence Q = N and | - |
can be any homogeneous quasi-norm on RY, in particular with the usual BEuclidean
distance, i.e. |-| = - ||g, this was investigated in [51].

Let us give improved reverse Stein-Weiss inequality.

Theorem 4.18. Let G be a homogeneous group of homogeneous dimension ) > 1

and let | - | be an arbitrary homogeneous quasi-norm on G. Suppose that X > 0,
p,q € (0,1) and$+%=%ﬁﬂ+2, where}%—i—l% =1, %+$ = 1. Then for all

non-negative functions f € LY(G) and h € LP(G), inequality (4.91) holds, that is,

[ [ty el @ity sy = Cl Lo lser

if one of the following conditions is satisfied:

_Q
(a) 0<a<—%.

(b) 0< B < -5

Proof. Firstly, let us show (a). By using some notations from proof of Theorem 4.15

and (4.94), we get
q L 1
( [ el ( / |y—1x|ku<y)dy) dx) > 1, (4.105)
G G
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1
and from Step 2 in the proof of Theorem 4.15 and by using (4.102), we get Iy >
Clllyl~Pull» (@), then we get

q % 1
(/ || (/ Iy‘lxlAU(y)d@/) dfﬂ) > I3 > Cllly| " ull o). (4.106)
G G

Let us show (b). From(4.94), we get

</G I </G ‘ylxMy)dy)qu)é > 17, (4.107)

1
and from Step 1 in the proof of Theorem 4.15 and by using (4.92), we get I >
C|lly|~Pul|1»(G), then we have

1
q q 1
([Lralr([1rtePatar) ao)" = 1 = CllaPulwe. (@108)

OJ

4.8. Reverse Hardy-Littlewood-Sobolev inequality with —oco < ¢ <p < 0 on
the homogeneous Lie groups. In this section, we prove reverse Hardy-Littlewood-
Sobolev inequality and Stein-Weiss type inequality with —oco < ¢ < p < 0 on homo-
geneous Lie groups.

Let us present one of the main results of this section.

Theorem 4.19 (Reverse Hardy-Littlewood-Sobolev inequality). Let G be a homo-
geneous Lie group of homogeneous dimension @ > 1 with a quasi-norm | -|. Assume
that g <p <0, A <0 and}%—i—é—’—%:() wherel i:1 andl—i-&:l. Then for
all non-negative functions f € LY (G) and 0 < fG h?(z)dxr < oo,

/Gfgf(x)ly‘lfﬂlkh(y)dwdy >C (/G fq/(x)d:r>q/ (/G hp(x)dx);, (4.109)

where C' is a positive constant independent of f and h.

Proof. By using reverse Holder’s inequality with l + l, =1, we get

//f )y~ x| h(y) dydw_/(/ly LMy dy) f(x)da
> ([ ([ wrabaa) dx)q v

So for (4.109), it is enough to show that

(L ([t ) e [

/G!ylxlkh(y)dyZ/ . |y~ [ h(y)dy,

B(0.5)

We have that
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then

([1apuoar) < ( / gy )

Therefore, we obtain

1

1
. q g<0 q q
(/ </ |y1w\Ah(y)dy) da:) > / / ly 'z h(y)dy | dz ] . (4.110)
G G G (0 JEd} )
By using Proposition 2.7 with |y| < %, we get

_ (2.10) BC
v~z < Cllzl +lyl) < <-lal = Cilal, (4.111)

where C' > 0 and C) = % Then for any A < 0, we have
Ol < Jy~ |

It means,
o[ o P00 < / N
so that . .
(/ oz IO > <cp ( / - \x!*h@/)dy) .
Finally,

Q

(L a2 ([ mre) )
</ 'A"( 7)h<y>dy) d)

If condition (4.36) in Theorem 4.6 with u(z) = |z|* and v(z) = 1 in (4.35) is satisfied,
then we have

1

</ || (/ o) h(y )dy)qu);>0(/@7hp(x)da:)p.

Let us start to check condition (4.36). From assumption, we have

O=—+-+—= -+ =, 4.113
yoqg Q Q ( )
it means ) + \qg > 0. By using this fact, we obtain
_ A g,, P Aq,.Q—1
/ . u(y)dy = / ) ly| dy / / r* drdo
B(05) B0 (4.114)

5 Ag>0 S
— & Q+Aq g, @t Q+Xq
| ’/o A Qg
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and

Juy ™0 My‘/ / @iy = el (4115)

Finally, by using assumptlon —|— + Q

oo - (nigrom) (5)

it means, D;(|z|) is a non-decreasing function. Then,

1
7

W”z*q_( Sl ) (@)
2Q+Aq(Q + )\q) 2Q ’
(4.116)

T =

1
7

| s s
Dl:iﬁﬁpl('x'):(WH%QH@) <2Q) -0

O

Remark 4.20. Inequality (4.109) is an even new in the Abelian (Euclidean) case
G=R"4),Q=nand|-|=]|-|g (| |g is the Euclidean distance).

4.9. Reverse Stein-Weiss type inequality with —oco < ¢ < p < 0 on the
homogeneous Lie groups. Let us show, the reverse Stein-Weiss type inequality on
homogeneous Lie groups.

Theorem 4.21. Let G be a homogeneous Lie group of homogeneous dimension ¢Q > 1
with any quasi-norm | - |. Assume that ¢ < p < 0 A<0, 8> Q,, a > —% and
% + é + %M = 0, where 1 5 + 4 7= =1 and % —I— 7 = 1. Then for all non-negative
functions f € LY(G) and 0 < [, h*(z)dz < oo,

//]m\ F@)ly— 2 hly )\y[ﬁdxdy>0</ (2 dx)

where C' is a positive constant independent of f and h.

U=

</«; hp(x)dx>; . (4.117)

Proof. Similarly to Theorem 4.15, we need to show

g

/@ (/G |x\a|ylx|Au(y)dy)qu <C (/G ’1/|Bpup(x)dx) e |

where u(y) = h(y)|y|°. We have that

[ttty aPutdy = [ el Pty dy
G B(0,12)

( / |x|a|y—1x|ku<y>dy)“§° ( / oy I >dy>q.

then
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Hence, we obtain

([ (s
150 (/ p (/ )|y Py )dy)qu>q =17, (4.118)

Similarly with (4.118), we have

1
¢ N\
([1atr([tapuan) ac)
G G
q<0 q % 1
> (/ || (/ ]y1x|’\u(y)dy> dx) = 1. (4.119)
G G\B(0,2]z|)

By using (4.118)-(4.119), we get

(/G 2| (/@ !yleu(y)dy)qu); > %q 4 %q (4.120)

From now on, in view of Proposition 2.7 we can assume that our quasi-norm is
actually a norm.
Step 1. Let us consider [;. By using Proposition 2.7 with |y| <

-

Ix\ , we get

3C
™ l"l < C(|ﬂ?|+|y|)<—|ﬂ?| Ciz], (4.121)

where C' > 0 and C} = % Then for any A < 0, we have
Cilal* < ly~tal*.

Therefore, we get

hi= [ fal ( / oy 7l >dy>qu<okq [ g ( / (0’§)u<y>dy>qu.

If condition (4.36) in Theorem 4.6 with u(z) = |2|(®*V7 and v(y) = |y| =7 in (4.35)
is satisfied, then we have

q

q
L<c / / u(y)dy |x|<a“>qda:sc( / |y|-ﬁpup<y>dy)”
G \/B(0,'g) G

Let us verify condition (4.36). By using assumption § > — Q,, we obtain

1 1 a+pB+XA_ 1 a+A
O==—4+-+—F7—+—>-+ Q0

’E\
<
O
Q
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that is, (S’L)‘)q < 0, then @ + (o 4+ A)g > 0 and by using the polar decomposition
(2.11):

2

( / . U(y)dy> = / . |y|(““)"dy>
B(O,—) B(O,—)
Il 7
- /2 /rer(a+A)qd7’dU
0o Je
Jo]

q

0

( Sl ‘x|Q+(a+A)q)
(@ FN4(Q + (a + A)g)

_ ( S| )‘11 |x|Q+(C;+>\)q
(@tN9(Q + (a + A)g) '

(e

Q=

Since 8 > —<, we have
p

—Bp(1—p)+Q = pp' +Q > 0.

So, —Bp(1 —p') + Q > 0. Then, let us consider

1 1

( Lo Ul—p’<y>dy) L |y|_6”(1‘p')dy>p

2
1

— /B(O o ly| dy)p
N / / e ldrda) (4.122)

1

= v
= | 8] / rﬁp/mldr)
0

— ( ‘6‘ | |Bp +Q)
27 HR(BY + Q)

1

B |&] ?l |ﬁp'-/-Q
ey +qQ)) '

/

o=
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°‘+6+>‘ =0, we have

v (y)d )1"
ay

Therefore by using , + +

Dy(jaf) = ( / (Oé)u(y)dy); ( / (

- ( <@|(+5|<a+x> >)1

x

1
7

16| P (atngte B +Q
; | e
7RGy + Q)

1
o

“(wvor @) (eGrrg)

Q= O

S

(4.123)

it means D;(|z|) is a non-decreasing function. Therefore,

L

. [S )( [&] )
Dy =inf D = >0. (4.124
1= Inf Da(fa) ( TG+ (@t Ng)) \ PTG+ Q) (4.124)
Then by using (4.35), we obtain

q

B2 [ oo ( / w)u(y)dy)qusc( / ry\ﬁwy)dy)”, (1125)

so that

>0 </G Iy\ﬁ”up(y)dy); =C (/G hp(y)dy);- (4.126)

Step 2. As in the previous case [;, now we consider Ir. From 2|z| < |y|, we
calculate

(210 3C
ly x| < Cllzl + ) < 5-lvl = Cilyl,

then |

ly =t = Clyl,
where C' > 0. Then, if condition (4.54) with u(z) = |2|*? and v(y) = |y|~P*+VP is
satisfied, then we have

n=[(f o PG hiy)
<C/ kg (/@\Bmm) (y)|ylAdy>qdw§C(/Glyl‘ﬂpup(y)dyf-

Now let us check condition (4.54). We have

1 1
< / U(y)dy) = ( / \y!aqdy)
G\B(0,2|z|) G\B(0,2|z[)
= (/ / r“qu_ldrda) ’
2lz| J &

2|G| % Q+aq
= —_— |x| q s
|Q + aq|
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where Q) + aq < 0. Fromoz>—%,wehave
1 1 a+pB+X_ 1 B+A
O==-+-+———+—">—+——,
Poq Q roooQ
then
B+ NP +Q <0. (4.127)

By using this fact, we have

1
7

’ » _ o p
(/ olP (y)dy) - (/ \y! (B+N)(1 p)pdy)
G\B(0,2|z|) G\B(0,2z)

( 2|6| )p’ | |Q+(B-/M)p'
— €T P .
1Q + (B+ N/

Then by using }% + % + %ﬁﬂ =0, we get

2|6| )( 2|6| ) Qiag  QEBEAY
Ds(|x]) = !l ¢ |x p’
b = (igrv) (ratsmen) ¥l

[

't!\‘ -

) ) (4.128)
(i) )
Q+aql) \|Q+(B+Np[)
it means Dy (|z]) is a non-increasing function. Therefore we have
Dy = inf Dy(|z|) = inf (/ u(y)dy) ' (/ vl_p/(y)dy) ’
g 770 \JG\B(0,2[x) G\B(0.2]a]) (4.129)

’ﬁ\‘ [

:( 2/6| )( 2/6| ) 0
1Q + aq Q+ (B+A)p| '

Therefore, we have

q »
n=[ ([ el tebar) o<z ([ rema)
G \JG\B(0,2z)) G

Then, we have

Ij > 270, (/«; |y|‘ﬂpup(y)dy>p =277Cy (/@ h”(y)dy) - (4.130)
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Finally, by using (4.126) and (4.130) in (4.120

(/(G o (/(G |y_1x|A|y|ﬁh(y)dy)qd:p) _

~—

, we obtain

Jre ([ |y-1x|ku<y>dy)qda:);

Q|-
VR

I I
> -1 472
-2 + 2

1
p

> C |y|—ﬁpup<y>dy)

B =

h”(y)dy)
(4.131)
O

Remark 4.22. Inequality (4.117) is an even new in the Abelian (Euclidean) case
G=RN,4),Q=Nand|-|=||g (|- |g is the Euclidean distance).

Remark 4.23. Particularly, from (4.117) we can not obtain the reverse Hardy-
Littlewood-Sobolev inequality from o > —% > 0.

4.10. Improved reverse Stein-Weiss type inequality with —oco < ¢ < p < 0.
Let us present the improved reverse Stein-Weiss type inequality on homogeneous Lie
groups.

Theorem 4.24. Let G be a homogeneous group of homogeneous dimension () > 1
and let | - | be an arbitrary homogeneous quasi-norm on G. Assume that ¢ < p <0,
A <O, and%%—%—i—%ﬁﬁ = 0, where%%—}% =1 andé—i—& = 1. Then for all
non-negative functions f € L7 (G) and 0 < [, h?(z)dx < oo, (4.117) holds, that is,

[ [t st et nelyasas = ¢ ([ fq’<x>dx);’( / hz»(x)dx)‘l“, (4.132)

if one of the following conditions is satisfied:
(a) /8 > _I%;
(b) a > -2,
q

Proof. Let us prove (a). By using (4.130), we have

([ (from ) = ([i([, ) )

where u(y) = |y|°h(y). Then by using Step 2 in the proof of Theorem 4.21, we obtain

(i (o ) ) = ([ ([, 4] )
e (/G |y|‘ﬂpup(y)dy>; .
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Let us prove (b). By using (4.126), we have

(/G || (/G |y—1x|Au(y)dy)qu); > (/G || (/B(ngl) |y_1$|AU(y)dy>qd$> 3’

where u(y) = |y|°h(y). Then by using Step 1 in the proof of Theorem 4.21, we obtain

</G o (/‘G’ |y_1x|ku(y)dy)qu); - </G </B(o,'§') xP“@)ylx*d@/)qu);

Step 1 %
z cr(j£|y\ﬁ@up@ndy) |
]

Remark 4.25. Inequality (4.132) is an even new in the Abelian (Euclidean) case
G=(R"4+),Q=Nand|-|=|"|g (| is the Euclidean distance) with the
conditions in Theorem }.2/.

4.11. Reverse Hardy inequality with radial derivative on the homogeneous
Lie groups. Let us give reverse Hardy, LP-Sobolev and LP-Caffarelli-Kohn-Nirenberg
inequalities on G. Suppose that f is a radially decreasing function, i.e., Rf := ﬁxl f<
0. Let us give the reverse Hardy inequality on homogeneous Lie groups.

Theorem 4.26 (Reverse Hardy inequality). Let G be a homogeneous Lie group with
homogeneous dimension Q@ > 1. Assume that p € (0,1). Then for any non-negative,
real-valued and radially decreasing function f € C§°(G \ {0}), we have

f p

—— > ——||Rf|lrc)- 4.133

£l I e (1.133)
Proof. By denoting Ry = —R, so that we have R;f > 0. By combining polar

decomposition (2.11), integration by parts and reverse Holder’s inequality, we get

Py [ [ 20,00

c |zl
_ D (@)
Q—pJg |z[p?

Rf(x)dx

_ 4.134
- L D ) .
Q-plJg |zf!
p || £
> — || R (G-
S
This gives
f p
T > 5—IRaifllero), (4.135)
|| LP(G) Q-—p ' ©

implying (4.133). O
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4.12. Reverse L[P-Sobolev inequality with radial derivative on the homoge-
neous Lie groups. Let us define by E = |z|R the Euler operator. Then we have
the reverse LP-Sobolev inequality.

Theorem 4.27 (Reverse LP-Sobolev inequality). Let G be a homogeneous Lie group

with homogeneous dimension Q) > 1. Assume that p € (0,1). Then for any non-
negative, real-valued and radially decreasing function f € C3°(G \ {0}), we have

p
1l o) = @H]EfHLP(G)- (4.136)

Proof. By denote E; = |z|R4, so that E;f > 0. By combining polar decomposition
(2.11), integration by parts and reverse Holder’s inequality, we get

[ #r@as= [ [ e nast)
--% /G @)l RS (2)de

:% /G P71 @) |t Ruf (x)da (4.137)
=P P=Y)E, f(x)dx
-2 / PN @B f(2)d

P _
> = ||f| Zzp(lq;) HElJCHLp(G)-
Q
This gives
p
HfHLP(G) 2 @”ElfHLP(G), (4.138)

implying (4.136). O

4.13. Reverse LP-Caffarelli-Kohn-Nirenberg inequality on the homogeneous
Lie groups. Let us give the reverse LP-Caffarelli-Kohn-Nirenberg inequality on G.

Theorem 4.28 (Reverse LP-Caffarelli-Kohn-Nirenberg inequality). Let G be a homo-
geneous Lie group with homogeneous dimension Q > 1. Assume that p € (0,1). Then
for any nonnegative, real-valued and radially decreasing function f € C§(G \ {0}),
we have

p p—1

Rf

ER

f

2|75

p

o P
(@) Q—n

|7

: (4.139)
Lv(G)

LP(G)

forall o, € R and v = a+ f+ 1, such that Q > ~.
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Proof. By combining polar decomposition (2.11), integration by parts and reverse
Holder’s inequality, we get

fp(x)dx:/ooo/gwrQ_ldeO(y)

¢ |z|
p—1
:_Q€W/@ﬁﬂé?Rf@Mm

P [ 7=
/G Rif(z)dx

Q=7 Jg |x]+?
_r [ R,
= 3 - €T
Q—7Jc Izl || ( )
p—1 4.140
> p / Rif
- _ Br’ «
Q 8 |x| P LP(G) |$| Lr(G)
p—1
__ P f Rif
Q -7 @ |‘T|a D
2|77 LP(G) L (@)
p—1
D f Rif
- _B_ @ :
Q-7 || P-T ) || LP(G)
This gives
i R, f P
- > L - - , (4.141)
|z|® L(G) Q- | r@G) || |x]PT Lo (G)
which implies (4.139). O

Remark 4.29. In (4.139), if we take v = p and o = 0, then we have the reverse
Hardy inequality. Also, if we take v = 0 and f = 0, then we have the reverse
LP-Sobolev inequality.
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5. APPLICATIONS

In this chapter, we show some applications of the fractional functional inequalities
in PDE.

5.1. Lyapunov-type inequality for the fractional p-sub-Laplacian. In the one
of the popular Lyapunov’s work [67], he considered the following one-dimensional
homogeneous Dirichlet boundary value problem was studied (for the second order
ODE)

' (z) + w(z)u(z) =0, = € (a,b),
{u(a) = u(b) =0, (5.1)

and it was proved that, if u is a non-trivial solution of (5.1) and w(z) is a real-valued
and continuous function on |[a, b], then

[ et

Inequality (5.2) is called a (classical) Lyapunov inequality. This inequality has an
application in spectral theory. If w(x) = A, where X is a positive constant, then we
get lower estimate for the first eigenvalue of the problem (5.1) in the following form:

4
(b—a)*

(5.2)

AL >

Now, Lyapunov’s inequality has a lot of extensions in one-dimensional and multi-
dimensional cases. As example, in the work [08] the author obtains the Lyapunov
inequality for the one-dimensional Dirichlet p-Laplacian

(| ()P~ () + w(z)uP~H(z) =0, x € (a,b), 1 <p< oo,
{<> u(b) =0, >3
where w(x) € L'(a,b), so
/ |w(x |dx> )p 7, 1 <p<oo. (5.4)

Particularly, if p = 2 in (5.4), we recover (5.2).

In the paper [(9] the authors obtained interesting results concerning Lyapunov
inequalities for the multi-dimensional fractional p-Laplacian (—A,)%, 1 < p < 0o, s €
(0,1), with a homogeneous Dirichlet boundary condition, that is,

(5.5)

(—=Ap)*u = w(@)[uf~u, z €9,
u(z) =0, x € RN\ Q,

where Q C RY is a measurable set, 1 < p < oo, and s € (0,1). Let us recall the
following result of [69].
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Theorem 5.1. Let w € L2(Q) with N > sp, sﬂp < 0 < 00, be a non-negative weight.
Suppose that problem (5.5) has a non-trivial weak solution u € W3*(Q). Then

(/Q “(2) dx) ” Tpig (5.6)

Q
where C' > 0 s a universal constant and rq is the inner radius of §2.

S

In this section we prove a Lyapunov-type inequality for the fractional p-sub-Laplacian
with a homogeneous Dirichlet boundary problem on G. Assume p > 1 and s € (0, 1)
be such that @) > sp and 2 C G be a Haar measurable set. We denote by rq, the
inner quasi-radius of €2, that is,

ro, = max{|z|: x € Q}. (5.7)
Let us consider
(—=Ap)*u(x) = wlu(@)[P?u(z), = € Q, (5.8)
u(z) =0, ze€G\Q, '

where w € L>(Q).
Deﬁnition 5.2. A function v € W3P(2) is called a weak solution of the problem

(5.8
|u ) — u@)I"*(u(z) — u(y)) (v(z) — v(y)) = | w(@)|ul@)P2ulz)v()ds
// dxdy—/ﬂ()|()| (z)v(z)d

|y_1x|Q+Sp
(5.9)

for all v € WP (Q).
Then we have the following theorem:

Theorem 5.3. Let Q C G be a Haar measurable set. Let w € L°(Q)) be a non-
negative weight with % < 0 < oo. Suppose that problem (5.8) with Q) > ps has a
non-trivial weak solution uw € W' (Q). Then, we have

C

HWHLQ(Q) 2 sp—Q/0°
TQ,q

(5.10)

where C' = C(Q,p,s) > 0.
Proof. By denoting
B=ap+(1—-a)p,

where a = € (0,1) and p* is the Sobolev conjugate exponent as in Theorem
3.9. Assume that 8 = p# with 1/0 + 1/0’ = 1. Then, we have

0—0/sp
0—1

8 8
'“g;’ < [, (5.11)
Q Tagq Q |z[esp

By using Holder’s inequality with exponents v=alandl / v+ 1/ =1, we get

ap 1—a)p* —a
e [ M /| |
|x|o¢8p |x|asp |$|Spdl'

(5.12)
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Then, by combining Theorem 3.9 and 3.4, we have

8 o/p . .
e < cr ([ [ g sy ) e e
S e v~ $| i

[l '~ P Lu] 7

<Y
—C ([U] ) ozp-i—(l a)p*)/p
=C

([ewlutora) '
<cC ( /Q we(:v)dx)el/e /Q ()P d

= Cllell%e / fu(a)Pde.

It means, we have
[u(=)|” /
[ M b < ol [ futo)p

Thus, from (5.11) we get

u
asp/|u |ﬁd < ”(l )| d <O|| ||L9(Q /Q|U(ZL‘)|ﬁd£E (513)

Finally, we arrive at
C

sp—Q/0
Tq

Theorem 5.3 is proved. O

< ||wllzoqy- (5.14)

Let consider the following spectral problem for the non-linear, fractional p-sub-
Laplacian (—A,)*, 1 <p < oo, s € (0,1), with Dirichlet boundary condition:

{(—Ap)m = MulP~2u, = €Q,

u(lx) =0, z€ G\ Q. (5.15)

We have the following Rayleigh quotient for the fractional Dirichlet p-sub-Laplacian

(cf. [69])
ul?
A\ = inf [l#. (5.16)
ueWy? (Q), u0 HuHLP(G)

As a consequence of Theorem 5.3 we obtain the following theorem:

Theorem 5.4. Assume \; be the first eigenvalue of problem (5.15) given by (5.16).
Assume @ > sp, s € (0,1) and 1 < p < co. Then we have

C
A > sup —————, (5.17)
Q o0 ’Q’érgqu/e
where C' is a positive constant given in Theorem 5.3, | - | is the Haar measure and

Tq,q 1S the inner quasi-radius of €.
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Proof. In Theorem 5.3, by takingw = A; € L(Q2) and using Lyapunov-type inequality
(5.10), we get that

1/6 c
||w||Le(m=||A1||Le<m=( [ras) = S (5.18)
T

Q,q

For every 6 > , we have

C

M2 ———75 (5.19)
ey,
Thus, we get
C
A > sup ———— (5.20)
1 sp—Q/0°7
2 peoe Qe
foralls%<9<oo.
Theorem 5.4 is proved. UJ

5.2. Lyapunov-type inequality for the fractional p-sub-Laplacian system.
Historically, in the work [70], at the first time authors showed Lyapunov’s inequality
for the system. They considered a system of ODE for p and g-Laplacian on the
interval (a,b) with the homogeneous Dirichlet condition in the following form:

—(ju/ (@)~ (2)" = f(@)u(z)]*Pu(@)]o(@)]%,
{—<|v'<x>|“v'<x>>’ — @@ lo@)P20(), 521
on the interval (a,b), with
u(a) = u(b) = v(a) = v(b) =0, (5.22)
where f,g € L'(a,b), f,g>0,p,q>1,a, >0 and
a0y
p g

So, for the system (5.21) with Dirichlet condition (5.22), we have the following esti-

mate (Lyapunov’s inequality):
N
( / g(ac)dac) , (5.23)

208 < (b — )i T </f dx)

where p/ = 1% and ¢ = q_—l. For the more general Lyapunov’s inequality for fractional

S21)

p-Laplacian with homogeneous Dirichlet conditions was proved in [71]. In the previous

section, we proved a Lyapunov-type inequality for the fractional p-sub-Laplacian with

the homogeneous Dirichlet condition. Here we establish Lyapunov-type inequality for

the fractional p-sub-Laplacian system for the homogeneous Dirichlet problem.
Namely, let us consider the fractional p-sub-Laplacian system:

(—Ap)" ua () = wi (@) Jua ()| P () [ua(2) [ fun (2)|*, @ € Q,

(— ) 2un(x) = wp(@) s ()| Jua (@) [ P () (@)™ w € Qo

(=8, ) " un(7) = wn (@) ur (2)]* uz () . Jun (2)[*Fun(2), € D,
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with homogeneous Dirichlet conditions
u(r) =0, xeG\Q, i=1,...,n, (5.25)

where Q0 C G is a Haar measurable set, w; € L'(Q), w; > 0, s; € (0,1), p; € (1,00)
and (—A,)* is the fractional p-sub-Laplacian on G. Here B(z,d) is a quasi-ball with
respect to ¢, with radius ¢, centred at x € G, and «; are positive parameters such
that

i, (5.26)
i—y Pi

We denote by rq, the inner quasi-radius of €.

Definition 5.5. We say that (ui,...,u,) € [[\_, W5 (2) is a weak solution of
(5.24)-(5.25) if for all (vq,...,v,) € [T, W5*" (), we have

[ [ ) ) ) 0) =D,
G JG |y~ |t

- [ it <f[\uj<x>raf> (H rujcv)\%') us()

j=i+1

az‘*Qui (gj)vl(l')dl', (527)

for every t =1,...,n.

Now we present the following analogue of the Lyapunov-type inequality for the
fractional p-sub-Laplacian system on G.

Theorem 5.6. Let s; € (0,1) and p; € (1,00) be such that Q > s;p; for all i =
1,...,n. Let w; € L°(Q) be a non-negative weight and assume that

1 < max { Q}<9<oo.

SiPi

If (5.24)-(5.25) admits a nontrivial weak solution, then

n
H [Jwi
i=1

where C' > 0 1s a positive constant.

O
-+ Q-0>"" | sja;
Pi j=155%j
L9(Q) Z CTQg 9

(5.28)

Remark 5.7. In Theorem 5.0, by taking n = 1 and a3 = p, we establish the
Lyapunov-type inequality for the fractional p-sub-Laplacian on G (see, e.g. Theo-
rem 5.3).

Proof of Theorem 5.6. For all i = 1,...,n, let us denote
& = vipi + (1 —v)pj, (5.29)
and
g — @
—T (5.30)
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where pf = Q_Qs_p_ is the Sobolev conjugate exponent as in Theorem 3.9. For all
i =1,...,n we have v; € (0,1) and & = p;0’, where ¢ = %. Then for every
ie{l,...,n} we have
@)l [ @)
ViSiPi T > ~i8iDi )
Q ’,”‘Qq Q |:L‘ 151P1i
and from Holder’s inequality with the following exponents v; = % and ui, + ﬁ =1,

we get

’Uz |£1 / | (2 |'szz‘u (z)|(—pi "

‘l‘ YiS zpz '72 iPi
Pi Vi
T |5iPi Q

([

On the other hand, from Theorem 3.9, we obtain

([

and from Theorem 3.4, we have
( / Jui ()7
o lzf*

—pdf> < Cluilgi

Thus, from (5.31) and by taking u;(z) = v;(z) in (5.27), we get

)P%*dx)lw. (5.31)

1—v;
d) < Ol

wi ()| _ & &
| 2( )| SC([Ui]pZ ‘ )pl <C([ul]Pz )pi

Q ‘gj YiSiPi 5,0, 8i,Di
n % n 0/
=¢ /wi(x) [luwlvde ) =c /wi(ﬂf) [ lu*dz)
Q i1 Q o
for every i = 1,...,n. Hence, by using Holder’s inequality with exponents 6 and @',

we obtain

Jui(@)|* o n »
Q \xl%‘smi dv < Cllwill o) Q [ 1w(@)*" de.
j=1

By using Holder’s inequality and (5.26), we get

/H|uj(;p)|ajefd;c <1I (/ lu; |9pjdx) ;-
Q=1 j=1

This implies that

|Ui(ﬂf)|5 - o
/Q e < Ol H1 "7
1

& , &
o)y, o [ 16,
0 TQ’LZ Q |[E ViSiPi

So we establish
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o

n J
% I Pj
< Ol 1 (/Q |uj|9mdq;) .

j=1
Thus, for every e; > 0 we have

€5 .
(@)l ! Y
( Z’yisipi dx = T eisipi |uZ (l‘) |§z dx
Q Tag TOq Q
ela]

|Uj|9/pjdl"> ,
Q

T =
< Clalain TT
j=1
so that
1 n o e
S . Pig
Tg?g:l VjSiPj€; :zl_Il (/Q ’ul<x)| l’)
- o0 n ) ‘112577163
=1 i=1

This yields

n n a; Y€
1 ;Zfel 9’pl ;Z e
S <C (11 ||wz'HLe(Q)> (H <’uz‘($)| dl‘) , (5.32)

Q,q i=1
where C' is a positive constant. Then, let us choose ¢;, 2 = 1,...,n, such that
Y€ .
— == T =0, i=1,...,n.
pi
Consequently, by using (5.26) we have the solution of this system
a.
ei=—,1i=1,...,n. (5.33)
pi

By combining (5.32), (5.30) and (5.33) we establish

n
LT sl
i=1

Theorem 5.3 is proved. O

O

e Q-03" | sjay
P; j=151%
19(9) > CrQq .

(5.34)

Now, let us discuss an application of the Lyapunov-type inequality for the fractional
p-sub-Laplacian system on G. In order to do it we consider the spectral problem for
the fractional p-sub-Laplacian system in the following form:

(=4 ur (@) = Mong(@)|ur () P (2) Jua () |2 Jun (2) |, @ € Q,
(= Q) uz(w) = Apoap(w) |ua ()] |uz(2)[**Puz (@) . . Jun(2)|*", x € Q,

(=4, ) un(z) = Apanp (@) Jur (2)[* ua(2) |2 . . [un ()2 "Pun(2), = € Q,
(5.35)
with
w(x) =0, x€G\Q, i=1,...,n, (5.36)
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where Q C G is a Haar measurable set, ¢ € L'(Q), ¢ > 0 and s; € (0,1), p
(1,00), i=1,...,n

Definition 5.8. We say that A = (\1,...,\,) is an eigenvalue if the problem (5.35)-
(5.36) admits at least one nontrivial weak solution (ui,...,u,) € [[;=, W5 ().

Theorem 5.9. Let s; € (0,1) and p; € (1,00) be such that QQ > s;p;, for all i =
1,...,n, and

1 < max {

Let ¢ € LP(Q) with ||¢|| o) # 0. Then, we have

P SR

Tk Oy
C 1 1
e . (5.37)
(69> n Pi 03" | 0isi—Q TN il
|y TQ% ' || Ay Jo ¥ (x)dx
where C' is a positive constant and k= 1,...,n.

Proof of Theorem 5.9. In Theorem 5.6 by taking w, = M\ayp(z), k = 1,...,n, we
have

bap bay T
akpk )\kﬁk H > CTQ 0375 ls]a]
i=1,ik
Thus, using (5.26) we obtain
eaik M n o 0
PN ] @ [ Faydn = erd T,
i=1,i#k Q
This implies
So C
AR > z ,k=1,....n
P 92] 1855~ Q n )\ G;i 0 d
a” Toq Hi:l,i;ﬁk(ai i) P fQ‘P (z)dx
Finally, we obtain that
N> C 1 1
k= — | /= )
(6773 n pi 921 i5i—Q
Hi:l,i;ﬁk A roq ¢ [T, itk & fQ @
k =1,...,n. (5.38)
Theorem 5.9 is proved. O

5.3. Existence of weak solutions with nonlocal source on the Heisenberg
and stratified groups. In [72], under certain assumptions on f (classically, this
condition is called Ambrosetti-Rabinowitz condition), for the following semilinear
equation

{_Au = f(z,u), € QCR", (5.39)

u(z) =0, x € 09,
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the authors proved existence of solutions by the mountain pass theorem. Mountain
pass theorem is using to show critical points of the some differentiable functional.
Here and after by 0€2 we denote the boundary of a smooth bounded set €2. After the
work of Ambrosetti and Rabinowitz [72], a number of extensions and generalisations
of their result has been published. Also, for the fractional nonlinear problems, for
the fractional p—Laplacian, fractional Schrodinger—Kirchhoff type and Choquard-
Kirchhoff existence of weak solutions were proved in [73], [74], [75] and [70]. One
of the main aim of this section is to extend the above ideas to non-commutative
analysis, it means using our functional inequalities. Hence, we will consider analogues
problems on the Heisenberg group, which is the most popular example of the non-
Abelian nilpotent Lie groups. On the Heisenberg group, there is already a number of
results related to the existence of solutions to the semilinear equations starting the
pioneering works (see e.g., [77] and [78]). In this section we show existence of the
weak solution by mountain pass theorem on Heisenberg group, which can be easily
extended to the general stratified Lie groups.

Firstly, let us give definition of the Palais-Smale sequence (shortly, (PS).) sequence.

Definition 5.10. [72] Let E be a Banach space. A sequence {u,} is a (PS). sequence
for a functional ® € (®,R), if every {u,} C E satisfies:

®(u,) — ¢, for n— oo, (5.40)

and
' (u,) — 0, for n— oo in E*, (5.41)
where ’ is the Fréchet differential and E* is the dual space of F.

Then let us give a version of the (minimax) mountain pass theorem (see, e.g. [79]).

Theorem 5.11. Suppose that X be a Banach space and ® : X — R a C-functional
with a (PS). sequence. Let I" be a class of paths joining u = 0 with u = w:

[={y € C([0,1], X) | 4(0) = 0, 7(1) = w}, (5.42)

where w € X, ||lw|| > r > 0, ® is bounded from below on S(0, p) ={u € X : ||ul]| < p},
that s,

a =max{P(0),P(w)} < inf P(u)=p. (5.43)

u€S(0,p)

Then ® possesses a critical value ¢ > [ which can be characterised as

c¢=1inf max ®(u).
€l uey(0,1)
5.3.1. On Heisenberg group. It is well-known that the class of the Heisenberg groups
is a subclass of the stratified Lie groups, that is, obviously, the above theorem is valid
for the Heisenberg group setting. Firstly, we show our result on Heisenberg group.
Assume that f(z,) is a Carathéodory function f : Q@ x R — R satisfying the
following assumptions (Ambrosetti-Rabinowitz condition):

pl) There exist constants a;, as > 0 such that |f(z,€)| < a1 + aslé|?, a.e. z € Q
andé’E]Rwithp<s<%—1;
f(@.8)

p2) limye o T = 0, uniformly in z € Q;



108

p3) There exist u > p and r > 0 such that 0 < pF(x,&) < £f(z,§) with [£] > r,
a.e. v € H", £ € R. Here F(z,¢) = fo f(x, t)dt.
p4) f(z,€) € C(Q,R).
As the model case, the function f(z,€) = a(z)[£|*72¢ with a € L>®(Q2) and s €
[p, p*) can be considered as a Carathéodory function satisfying the assumptions pl)-

p4).

Then, under the above assumptions on the right hand side, we consider the follow-
ing homogeneous Dirichlet boundary value problem for the p-sub-Laplacian with the
nonlinear source (or the nonlinear right hand side) on the Heisenberg group:

—Appu= f(z,u), ze QCH" 1<p<Q, (5.44)

u(z) =0, x € 09, '

where Ay, is defined in (2.30). Let us recall from Section 2.3 the Sobolev space in
the following form:

SYP(Q) = {u € LP(Q) : X;u € LP(Q) and Yiue LP(Q), i=1,...,n}  (5.45)

with the norm

lullssey = ([ 1@l + [Vaua)e) " (5.46)

Let Sy () defined as the completion of C$°(€2) with the norm

HuHSé,p (/\VHU ]pda:> : (5.47)

For simplicity, we also use the notation W := S P(Q).

Note that the above integral measure is mdeed the standard Lebesque measure
since it can be considered as a Haar measure on H", that is, the Lebesque measure
is also translation invariant with respect to the group law of H".

To introduce a variational structure for problem (5.44), we introduce I : W — R
as follows

1
W) = L / IV ulPde — / F(z, u)dz, (5.48)
P Ja Q
where

Fla,u) = /0 " fe,€)de.

We note I is a Fréchet differentiable functional with respect to u € W for any ¢ € W,
so we have

(]'(u),gp}:/Q|VHu|p_2VHu-VHgoda:—/Qf(x,u)go(x)dx, (5.49)

where (-, ) is the dual product between W and its dual space W*. Let us give the
definition of a weak solution.

Definition 5.12. We say u : {2 — R is a weak solution of (5.44), if u € W, such that
/ |V yulP 2V yu - Vipedr = / flz,u)p(z)dz, Yo e CF(Q). (5.50)

Then we have the following properties of Carathéodory functions:
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Lemma 5.13. Let Q be a measurable set in H". Assume that f is a Carathéodory
function and assumption p3) holds true, then there exist constants ag,ay > 0 such
that

az|é|f —ay < F(x,8), Vo eQ, (5.51)
where > p.

Lemma 5.14. Let ) be a measurable set in H". Assume that f be a Carathéodory
function satisfying assumptions p1) and p4). Then for any £ € R, we have

|f(z, &) < el + (s + Drle) €], (5.52)
and
|F (2, )| < eleP + r(e) g, (5.53)

where £ and k() are some positive small numbers. Here the numbers s and p are
defined as in pl1).

Note that the proofs of Lemma 5.13 and Lemma 5.14 are exactly the same as the
Euclidean case in [72].
Let us check the first assumption of the mountain pass theorem.

Lemma 5.15. Let Q) be a measurable set in H". Assume that f be a Carathéodory
function satisfying the assumptions p1) and p2). Then there exist positive constants
p,a > 0 such that ||u|lw = p and I(u) > « for allu € W.

Proof. By using Lemma 5.14 in (5.48), we get

u) = % /Q IV () Pde — /Q Fla, u(z))dz > }1) /Q IV u(z)Pde — ¢ /Q lu(z) Pdz
) /Q lu(z) [ dz.

From 1 < p < p* and 2 is a measurable domain, we have the continuous embedding
LP"(Q) — LP(Q) in © C H". For s+ 1 < p* we also have the following continuous
embedding LP" () < L*t1(€2), then

/|vHu |de—/ Fla, ux))dz
p/ IV ru(z )|pdx—€/\u Pz — k(s /m [ ds

1

_! / V(@) Pde — el g — £()lu
P Ja
1

> | Viu(@)Pds = Creljulf o, = <& Callul

(5.54)

(5.55)

s+1
Ls+1(Q)
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Moreover, by using Folland-Stein’s continuous embedding W — LF"(Q) (Theorem
3.45), we have

s+1

1022 [ Wi i ([ orar)” - e ([ ioras)

1 i
> Jlulf, (]; — Gy — Conle) |l ) . (556

Assume that u € W and |ju|lw = p > 0. From assumption s + 1 > p, choosing p
sufficiently small and choosing € such that o := p? (le — Che — CQH(E)pS+1_p> > 0,
we get

inf  I(u)>pP (% — Cie — Cgfﬁ(a)p“lp) > 0. (5.57)

ueW,|lullw=p

Lemma 5.15 is proved. UJ
Now let us check the second assupmtion of the mountain pass theorem.

Lemma 5.16. Assume that f be a Caratheddory function satisfying p1)-p4). Then
there exists v > 0 a.e. in W, ||v|lw > p and I(v) < a, where the constants o and p
are given as in Lemma 5.15.

Proof. By fixing |lu|lw =1 and v > 0 a.e. in H" with ¢ > 0. From Lemma 5.13, we
calculate

1 tP
I(tu) = —/ |V g (tu)|Pde — / F(z,tu(z))dx < —/ |V pulPdz
P Ja Q P Ja

tp

_ a4t“/ ultde + as|0) = & — a4t“/ ulfde + as|. (5.58)
Q p Q

From the assumption p > p and by taking t — +oo, we have I(tu) — —oco. Conse-
quently, by taking v = fu, with [ sufficiently large, we obtain the desired result. [J

From the above lemmas follow that the assumptions of the mountain pass theorem
are fulfilled by the functional (5.48). Then we need to show the (PS). compactness
condition for the functional (5.48).

Lemma 5.17. Assume that f be a Carathéodory function satisfying p1)-p4). Let
{u,} be a sequence satisfying I(u,) — ¢ and

sup{|[{(I'(un), ©)| : o € W, [l¢llw =1} =0 n — . (5.59)
Then the sequence {u,} C W is bounded in W.
Proof. Assume that {u,} C W be a (PS). sequence. Then for every ¢ € W we have

(I'(uy,), o) = /Q |V rtn [PV gy, - Vippds — /Qf(m,un)godx7 (5.60)

and

1
I(un)zﬁ/QIVHuan:E—/QF(x,un)dx. (5.61)
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Hence, we have

I(uy) — %(I/(un),un> - G? - %) /Q IV P — /Q <F(m,un) - W) do

_ (11 b _ M)
B (p u) /QWHM e /mmg (F(x’un) 7 e

L R L

where 1 > p.
Let us consider the second term on the right hand side. From Lemma 5.14 we
calculate

/ Flo,u,) — L&)
QN|uy |<r H

< ( T () 4 %( " qn<e>r5+1>) Q. (5.63)

Let us denote the right hand side by

1

0 = (5rp + k(e)r¥t 4 —(er® + q/i(e)rs“)) 19|
W

By combining (5.63) and assumption p3), we get

() — %(I’(un),un> > (]13 - i) /Q IV un|Pdz — 0. (5.64)

By the assumption in (5.59) with ¢ := T
such that

(ro (i) =+

with 7 (u,) < A. Hence, we have
1

for any n there exists a number \ > 0,

I(un) — p<f'(un),un> S AL+ flunlw), (5.65)
combining this with (5.64) we arrive at
1 1 ~
(5= 2 ) Tl <2+ )+
p p
Finally,
1 1\ ~
un |5y < (———) AL+ |lup||w) + 6
[[ttn]| P (AL A+ [[unllw) +6)
11\
<\, % Cr(1+ [Junllw) < C(1+ [[unllw).
where C' is a positive constant. O

Now we have to show that the (PS). sequence of I has a strong convergent subse-
quence, so we can say [ satisfies the (PS). condition.
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Lemma 5.18. Under assumptions p1)-p4), if {u,} C W is a (PS). sequence of I,
then {u,} has a strong convergent subsequence in W.

Proof. Since W is a Banach space, we have u,, — u weakly in W. Hence,
(I'(uy), (u, —u)) = / |V i1 P2V gty - Vi (w0, — w)de
2 (5.66)
- / [z, un)(uy — u)dz — 0, n— oo.
Q
Also, we have u,, — u strongly convergence in L¥71(Q), where s € [p,p* — 1). Then,
flz,up)(up, —u) — 0, ae. in Q, n — 0. (5.67)

Moreover, by using the Vitali convergence theorem, we obtain

lim [ f(x,u,)(u, —u)dx = 0. (5.68)

n—oo 9]

Plugging (5.68) in (5.66), we have
/ﬂ IV itn [P 2V gty - Vi (u, — u)dz — 0, n — oo. (5.69)
Since {u, } weakly converges in W, we arrive at
/Q(]VHun|p2VHun — | VyulP 2V gu) - Vg (u, —uw)dr — 0, n — oo. (5.70)

Now let us give some useful vector inequalities. Let C7,C5 be positive constants
depending only on p. Then, we have

la—BP < Cr(la%a— ) - (a—b), p>2, (571)
and
la —b|* < Cy(|al + [6))*P(la|P2a — [bP~2b) - (a —b), 1<p<2, (5.72)

for all vectors a,b € RY. Firstly, let us consider the case p > 2. By applying (5.71)
to (5.70), we have

|l un — ullfy = /Q \Via(u, —u)lPde = /Q \Vuu, — Vyu|Pdx
< 01/ (IVaua P>V u, — [VgulP*Vygu) - (Vgu, — Vgu)de
Q

= / (IVaua P>V iu, — |VgulP*Vgu) - Vi (u, — w)dz — 0,
Q
(5.73)
as n — 0o. It means for p > 2, we have

|lun — ullw — 0, n — occ.
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Let us consider the case 1 < p < 2. By using the fact {u,} is bounded in W, applying
(5.70) to (5.72), we have

Hun—uH’;V—/Q\VH(un—u)|pdx—/Q|VHun—VHu|pda:

[NIiS]

<0 </ (IV aun PV gy, — [V gulP 2 V) - (Vgu, — VHu)d:L’)
Q

X (/ |V mu,| + |VHu|dx)
0

S C’3 (/ (lVHUn|p_QVHUn - |VHu|p_2VHu) . (VH’LLn - VHu)dx)
Q

— 0,

(2—p)p
2

[NJiS)

(5.74)
as n — 00. hence, we get
|lun —ullw — 0, n—o00, 1<p< 0.
OJ

Theorem 5.19. Let f be a Carathéodory function satisfying p1)-p4). Then there
exists a non-trivial weak solution of problem (5.44).

Proof. By using Lemma 5.18, any (PJS). subsequence of I has strong convergence in
W. Also, we have that
I(0) =0,
and by taking p as in Lemma 5.16, there exists « such that I(u) > a > 0 = I(0),
where
we W, and ||ullw = p.

Therefore, now applying the mountain pass theorem, we get a critical point of the
functional /(u) which is a non-trivial weak solution of problem (5.44). O

5.3.2. On Stratified groups. Then let us extend previous result on the case of stratified
groups. Now let us consider the Dirichlet boundary value problem on stratified Lie
groups G:

{_ﬁpu:f(w,u), 1€QNCG, 1<p<Q, (5.75)

u(z) =0, z € 09,

where f is a Carathéodory function satisfying the assumptions pl) —p4) on G. Then
we have the following theorem:

Theorem 5.20. There exists a non-trivial weak solution of problem (5.75).

The proof is the same as the one of Theorem 5.19.
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5.4. Multiplicity of the weak solutions for the sub-Laplacian with Hardy
potential. In [30], Ghoussoub and Yuan considered the following problem with the
Hardy-Sobolev potential:

{—Apu(x) — N4 — 2,z e Q C R,

|[?

5.76
u(z) =0, x € 09, (5.76)

obtained existence and multiplicity of the weak solutions. Since then, analogues of
the problem with the Hardy potential have been considered by many authors, see

[81, 82, 83] and [81], for example.
In [85], Ghoussoub and Shakerian considered the following problem with fractional
Laplacian and the Hardy-Sobolev potential:
. 2% (a)—2
(—Ag)u —~ UZS = |u® 2 + |u—a7 u>0, zeR"
] ]

showed existence of the nontrivial weak solution. In this direction, most of studies
have been dedicated to the single Hardy-Sobolev nonlinearity. In [$6], the author
investigated the following problem:

U |u 2;(B)_2u |u|2;(a)_2

“A)u— _
GRS EE S T T e

, u>0, reR"

showed multiplicity of the weak solution with the doubling Hardy-Sobolev potential,
which generalises previous cases. In this section, we show multiplicity of the weak
solutions with first stratum Hardy potential on Heisenberg and stratified groups.

5.4.1. On Heisenberg group. Let us recall the “horizontal” LP-Caffarelli-Kohn—Nirenberg
inequality on Heisenberg group.

Theorem 5.21 (Theorem 3.1., [29]). For any f € Cg°(H" \ {z = 0}), and all
1 < p < o0, we have

f

217

f

27T

2n — 7|
p

,a,BER, (5.77)

Lr(H")

< Hvﬂf
||

where v = a+ B+ 1. If v # 2n then the constant @ 1s sharp.

Lp (Hn ) Lp (Hn )

When o = 0 and = p — 1, inequality (5.77) implies the first stratum Hardy
inequality, that is, for all f € C3°(H" \ {z = 0}), we have

f

2|

|2n — p|
p

<WIVafllppgny, 2= (x.y) € R?", (5.78)
Lr(H")
where 2| = /23 + ...+ 22 +yi + ... + 12
Similarly with previous section, we also use the notation W := Sé’Z(Q). Also, let
us define Sobolev space with the norm:

2\ 3 _ )2
|lul|x = (HVHUH%V—)\ %dé) , 0< A< A= (n—1)2:—(Q : ) :
Q

(5.79)

Indeed, || - [ and || - ||x are equivalent norms.
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Let QQ C H" be a measurable set with sufficiently smooth boundary 052 such that
(0,0,t) & €. Assume that n > 1 (thatis, @ >4),0 <A< A= (n—1)?= (Q 2 and
l<p<2r—1= Q — 1. In this subsection, we show multiplicity of posmve weak
solutions to the problem.
—Agu(§) = M = wP(€), E€Q CHY,
u() >0, e, (5.80)
u(§) =0, £ €09,

where |z| = /22 + ...+ 22+ + ... +y2, z=(z,y) € R™

To present a variational structure for problem (5.80), we introduce I : W — R as
follows

=5 [wwipas =3 [ Sae- s [uae e

where uy = max{u, 0}.
Note that I is a Fréchet differentiable functional with respect to u € W for any
p € W, so we have

/ Viu - Vipde — A / T ds — / P pde. (5.82)

For the functional I, let us verify the assumptions of Theorem 5.11.

Lemma 5.22. Let Q2 be a Haar measurable set in H"™. Then there exist positive
constants p, o > 0 such that ||u|lw = p and I(u) > « for allu € W.

Proof. Firstly, by the Folland-Stein-Sobolev inequality (Theorem 3.45), by using the
facts that the norms (5.47) and (5.79) are equivalent, 2 < p+ 1 < 2* = 22 and

Q-2
L¥ () — LPT1(Q), we have
[ullzoer (@) < Cllull e @) < Cllullw (5.83)

Now we give an estimate to the functional I(u). So, using the above embedding
and first stratum Hardy inequality we compute

/!VHUI d&——/ ﬁz f—pﬂ uP T dg

63 A :
= Ll — el — [ e

683 (1 A > gH (58)

‘)'> i A 2 p+1

= (5 n) Julfy - pHnunW

= Cullully -

where C,Cy > 0. Let u € W and ||u||W = p > 0. By choosing p sufficiently small,

we have « : Cl; —p% > 0, thus, we arrive at
. Clp Cz/)pJrl
inf I(u) > — > 0. 5.85
u€W, [lullw=p (W) 2 2 p+1 (5.85)
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Lemma 5.23. Under assumptions of Lemma 5.22, there exists v > 0 a.e. in W,
lvllw > p and I(v) < «, where the constants o and p are given as in Lemma 5.22.

Proof. Let us fix ||ul]lw = 1 and v > 0 a.e. in H" with ¢ > 0. Then we get

A
1) = gl =5 [ SFae— o [y

2 | 2|2 p+1
< |tullfy — —— [ (tuy)P*'d 5.86
< lltulfy =~ [ (wrriae (5.56)
— ﬁ _ tp+1 /up+1d§
2 p+1)g T
By the assumption p > 1 and by taking ¢ — +o0, we get I(tu) — —oo. Thus, by
setting v = fu, with (§ sufficiently large, we arrive at the desired result. O

Finally, we need to check (PS). condition for our functional. But we need to show
some preliminary result.

Lemma 5.24. Let {u,} be a bounded sequence in W such that I'(u,) — 0, asn — oo.
Then there exists w € W such that, up to a subsequence, ||u, —ullw — 0, as n — oo.

Proof. Since the norm || - ||y is equivalent to || - || x and {u,} is a bounded in W with
the norm || - ||, then we have
u2 A>0
[unllx = llunllw — )\/Q nEk s [unlw < C. (5.87)
By [3, Theorem 4.4.28], W is a Banach and reflexive space, so we have
Up, — u, in W, with the norm, || -|x (5.88)
and
Up, — u, in L"(H"),1 <7r <2 u, = u,a.e. in H". (5.89)

From this fact for p+1 < 2* and I'(u,) — 0 as n — oo, we have
nh_{go lunll% = nh—>Holo [ (un)+ ”LPJrl(Q (5.90)

Similarly, we get

lim ( /Q Vot Vgt — A /Q “t];)*dg) = W)+ 125 (5.91)

n—o0

By combining above facts, we obtain
|lun, — ul|lx — 0, n— oo.
By using property of norm’s equivalence, we have
I, — ullw — 0, n— oo.
OJ

Lemma 5.25. Assume that {u,} be a (PS). sequence such that Definition 5.10.
Then there exists u € W such that

lim ||u, — ullw = 0. (5.92)
n—oo
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Proof. By using Definition 5.10, we obtain

e+ o) = Iun) = () = (3 = 1) s

1 1 (un)? 1 1 (5.93)
) [ e (3 ) el

= Cllualliy = Cllunlliy,

with p +1 > 2. Thus, we have ||u,|lw < C. Therefore, by Lemma 5.24, we have
strong convergence of {u,} in W. U

Finally, let us give main result of this section.
Theorem 5.26. Problem (5.80) has at least two positive solutions.

Proof. Let us construct two solutions of the problem (5.80). By using Lemma 5.25,
any (PJS). subsequence of I has strong convergence in W. Also, we have that

and by taking p as in Lemma 5.23, there exists « such that I(u) > a > 0 = 1(0),
where

we W, and ||u|lw = p.

Therefore, now applying the mountain pass theorem, we get a critical point of the
functional /(u) which is a positive weak solution of problem (5.80).

Now let us construct another solution of (5.80). By Lemma 5.22, there exist positive
constants p,« > 0 such that ||u||w = p and I(u) > « for all u € W. Hence, we can
choose

p1 = {;relﬂg :I(u) >0, Yu € W, with ||ul|x = p}.

From this, we have p; > 0, then I(u)j0. Assume that ps > py, s.t. I(u) is a non-
decreasing functional with p; < ||u||x < p2. Then let us define the following smooth
function 6(n) in the following form: 0(n) =1 if n < p;, and 6(n) =0 if n > ps.

We define the following energy functional:

1 0 u?
I(u) == 9 /Q |V gul?dg — 26 (lullw) —=d¢ —

+1

If ||u|lw < p1, then Ir(u) = I(u) and ||u||w > pa, so we have

1 1
IQ(U) = §/Q|VHU’2d£— m/ﬂugj_ldf

It easy to see that I is a coercive functional. By W is a Hilbert space, we have that
the functional lower semi-continuity. Then we can say there exists minimum point
of Iy with negative energy, it means I, has a minimum point. It gives the second
solution. OJ
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5.4.2. On stratified groups. 1t is well-known fact, that the Heisenberg group is the
most popular example of stratified groups. In this subsection extended results on
stratified groups.

Let us give the LP-Caffarelli-Kohn—Nirenberg inequality on stratified groups.

Theorem 5.27 (Theorem 3.1., [29]). Let G be a stratified group with Ny being the
dimension of the first stratum, and let o, 5 € R. Then for any f € C5°(G\ {2’ = 0}),
and all 1 < p < oo, we have
[N —
p

f

X
/|7

Vof

']

f

71

, (5.95)
LP(G)

LP(G)

LP(G)

where v = a++1 and |-| is the Euclidean norm on RYN. If v = Nythen the constant
M=) 4 sharp.

P

If « =0 and f =p— 1, we obtain the first stratum Hardy inequality on G.

Let Q2 C G be a measurable set with sufficiently smooth boundary d€2 such that
{2/ = 0} ¢ Q. Assume that dimension of the first stratum N; > 2, 0 < A < A =
M and 1 <p<2*-—1= 5—?2 — 1. Let us consider the following problem:

Lu(z) — )\% =uP(z), v € QCG,
u>0, zeQ, (5.96)
u(x) =0, z € 0.

Theorem 5.28. Problem (5.96) has at least two positive solutions.

Proof. The proof follows the almost same lines of the proof of Theorem 5.26. Only
difference is that now we use, that is, stratified group versions of Theorem 3.45 and
Theorem 5.27 instead of Theorem 3.45 and Theorem 5.21, respectively. U

5.5. Existence of the weak solution for the fractional sub-Laplacian with
Hardy potential. Let us continue our studying of the existence of the weak solution.
In this section, we show existence of the weak solution for semilinear equation with
fractional sub-Laplacian and Hardy potential. Since then, fractional analogues of this
problem on Euclidean setting have been considered by many different authors, for
example, in [87, 88, 89] and [90]. In addition, we refer to [91, 92] and [93] as well as
references therein for fractional Laplacian problems with the Hardy potential.
Let us consider the following problem with Hardy potential on G:

(—A)u(z) — )‘Ilfv(\:;) =uP, xeQ\{0}CG,
u(z) =0, z€G\Q,

(5.97)

where €2 is an open bounded domain in G with smooth boundary, 0 < X\ < X is the
best constant of the fractional Hardy inequality on G, 1 < p < 2* — 1 and 2s < Q.

Setting S := W;?(Q), let us define the fractional Sobolev space on G with the
norm

lull§ = [ulss — A dz, (5.98)
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which is equivalent (by the fractional Hardy inequality) to the norm
||U||Wg’2(9) = [uls2, (5.99)
where [-]52 = []s2,0 is the Gagliardo semi-norm which is defined in (2.14).

Definition 5.29. We say u : 2 — R is a weak solution of (5.97), if u € S, such that

z) — p(y u
// ly_lxﬁg;z ( ))dxdy_/\/ﬂ |;|;idx—/guﬁg0dx—0, (5.100)

for all ¢ € S, where u, = max{u,0}.

The energy functional Corresponding to (5.97) can be given by the expression

|u(z /(u +)? 1 +1
d dy — A d - Pdz. (5.101
<// = 1x|Q+25 225 xr P+l Qu+ z. ( )

Note that I is a Fréchet differentiable functional with respect to u € S for any p € S,

so we have
y))(p(x) — Uy p
o= / |y—1x|Q+2s Daady o o™

—/uﬁgpdw. (5.102)
Q

For the functional I, let us verify the assumptions of Theorem 5.11.

Lemma 5.30. Let Q be a Haar measurable set in G. Then there exist positive con-
stants p,a« > 0 such that ||u|ls = p and I(u) > « for allu € S.

Proof. Firstly, by Sobolev embedding theorem, by using the facts that the norms
(5.98) and (5.99) are equivalent, 2 < p+1 < 2* = Q2TQ23 and L? (Q) — LPYY(Q), we
have

(3.37) with =0
ull o1 ) < Cllullp2s (g < Cllulls- (5.103)
Now we give an estimate to the functional I(u). So, using above embedding we
compute
|u(z / | |2 1 / +1
d d A - — Pd
(/ / o 1sc|@+2s A ST T
1
= —H I5 - p+1 UT da (5.104)
(5.103) 1 C’
> Dl — et
Sl = Sl
Let u € W and |julls = p > 0. By choosing p sufficiently small, we have o :=
o _ Cprtt

5 i 0, thus, we arrive at

, P
inf I(u) > — —
ueW,|lullw=p (v) 2 2

> 0. (5.105)
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Lemma 5.31. Under assumptions of Lemma 5.30, there exists 0 < v € S a.e. in W,
lvlls > p and I(v) < «, where the constants o and p are given as in Lemma 5.30.

Proof. Let us fix |Jullw = 1 and u > 0 a.e. in G with ¢ > 0. Then we calculate

I(tu) = S[Jtu? — —— / (b, e = & = O / W dz, (5.106)

2 p+1Jg 2 pH+lJg *
By the assumption p > 1 and by taking ¢ — +oo, we get I(tu) — —oo. Thus, by
setting v = Pu, with § sufficiently large, we arrive at the desired result. O

Lemma 5.32. Let {u,} be a bounded sequence in S such that I'(u,) — 0, as n — oo.
Then there ezists u € S such that, up to a subsequence, ||u, — ulls — 0, as n — oco.

Proof. Since the norm || - ||s is equivalent to || - ||s., for the norm || - ||s, there exists
u € S and a subsequence {u,}, such that,
Uy — u, in S, (5.107)
and
u, > u, in L"(G),1 <r <2, u, = u,ae. inG. (5.108)

From this fact for p+1 < 2* and I'(u,) — 0 as n — oo we have
: . 1 1
il = i ol = 5 (5109

Similarly, we get

R Y ey

= [lullhir ) (5.110)

Thus, we have
|tn — ulls =0, n— oo.
OJ

Lemma 5.33. Assume that {u,} be a (PS). sequence such that Definition 5.10.
Then there ezists u € S such that

lim |lu, —ul|s = 0. (5.111)
n—oo

Proof. By using Definition 5.10, we obtain

c+o(l) =1I(u,) — p%(ll(un) Up) = (% - ]ﬁ) (]2

1 1 n)2 (3.37) with B=2s (] 1 )
(oL /(“)ﬂm 5 LIS N T (5.112)
2 p+1 | |2 2 p+1
o C[un]82 C[un]s 2

with p+1 > 2. Thus, we have [|u,||s < C. Therefore, by Lemma 5.32, we have strong
convergence of {u,} in S. O

We are now in a position to present the main result of this section.

Theorem 5.34. Assume that Q C G be a Haar measurable set. Then there exists a
non-trivial weak solution of problem (5.97).
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Proof. By using Lemma 5.33, any (PS). subsequence of I(u,) has strong convergence
in S. Also, we have that

1(0) = 0,
and by taking p as in Lemma 5.30, there exists a such that I(u) > o > 0 = I(0),
where
u e S, and |lulls = p.
Therefore, now applying the mountain pass theorem, we have a critical point of the
functional I(u) which is a non-trivial weak solution of problem (5.97). O

5.6. Blow-up result to heat equation with fractional sub-Laplacian and
logarithmic nonlinearity on homogeneous groups. Firstly, heat equation with
logrithmic nonlinearity with Cauchy-Dirichlet problem was considered in [94]:

u(z,t) — Agu(z, t) = ulog |ul, (z,t) € Q x (0,+00),
u(z,0) = ug(x), x €9, (5.113)
u(z,t) =0, (x,t) €I x (0,+00).

Then they showed global solvability of solution by potential wells method. Also, they
showed the following blow-up theorem (in the Euclidean setting):

Theorem 5.35. [94] Assume that ug € H} () and
1 1 1
J(ug) = —/ |Vuo|2dr — —/ |uo|? log [ug|dz + —/ luo|*dz < M, (5.114)
2 Ja 2 Ja 4 Jo
and
I(up) :/ ]Vu(]]Qdac—/ |uo|? log |ug|dz < 0. (5.115)
Q Q

Then the weak solution of the problem (5.113) blows up at +o0.

Moreover, in [95] it is showed the condition J(ug) < M is unnecessary to blow-up
at infinity to a solution of the problem (5.113). In this section, we considered the
heat equation with the fractional sub-Laplacian with logarithmic nonlinearity and
we obtain the blow-up result. That is, we extend the blow-up theorem from [95] to
general homogeneous groups.

Let us consider the following Cauchy-Dirichlet fractional heat equation on the
homogeneous group:

Q) 1 (—Au(w,t) = ulx,t)log u(z, )|, (z,t) € Qx (0,+0c0), QCG,
u(x,t) =0, <x>t) €eG \ Q x (O’ —l—OO),
u(w,0) = uo(z),
(5.116)
where Ay is the fractional sub-Laplacian with s € (0, 1).

For simplicity, we introduce the notations Hg(Q) := W*(Q) and [u], == [u]s20-

Let us give the definition of a weak solution.

Definition 5.36. Let 77 > 0. A function u : Q x [0,400) = R, u = u(z,t) €

L>(0,T; H3(2)) with %1; € L*(0,T;L*()) is a called a weak solution of problem
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(5.116) in Q x [0, 400), if up € HF(2) and w satisfies (5.116) in the sense of distribu-
tion,
/utcpdac + ((—As)u, @) = / ulog |u|pdz, (5.117)
for any ¢ € H§(Q), t EQ(O, +00). "
Let us introduce the definition of the blow-up in infinite time.

Definition 5.37. Let u(x,t) be a weak solution of (5.116). We say that u(x,t) blows
up at oo if
m [Ju(-,1)]|72q) = +oc. (5.118)

t—+00

Let us consider the following energy functionals

1 1 1
J(u) = =[u]® — 5/{) *log |u|dx + 1 /Q lu|*dz, (5.119)

and
I(u) = [u]? — / u? log |u|dz. (5.120)
Q

By combining last facts, we have relation between two functionals in the following

form:
1

1
J(u) = 21(u) + 1 / luf2dz. (5.121)
2 4 Jq
We have the following energy identity for (5.116).

Lemma 5.38. Assume that u is a weak solution of the problem (5.116). Then we
have

t
/0 tr Byl + T () = J (o), ¥t € (0, +00). (5.122)
Proof. By taking inner product between (5.116) and wu; over €2, we get

/|Ut|2d$+<(—As)u,ut> :/utulog\u|dx. (5.123)
Q Q

For the second term on the left hand side of (5.123), we have

(g = [ [ 0 t>><ut<xt>—ut<y,t>>dmy

|y 1x|Q+25

|u(z y. ) _ Lldu
dedy = ———==. (5.124
2dt// |y 1x\Q+2s > a1

On the right hand side of (5.123), we get

du?1
%g]u\ = 2usulog |u| + uuy, (5.125)
then
1d 1
/utulog]u|dx— u log |u|dx — —/uutd:v
o 2 dt 2/,
_1d

1d
u *log |u|dr — = u2d:1:. (5.126)

T 2adt 4dt
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By using (5.124) and (5.126) in (5.123), we obtain

d (1 1 1
u 2dx—|——(—u§——/u2log udx+—/u2dx)
[ e+ 5 (G2 =5 [ attogluige+ 5 [
d
:/|ut]2d9$+—J(u):O. (5.127)
0 dt

Integrating over (0,t), we arrive at

¢ bdJ(u)
2 _
/O HUTHLQ(Q)dT + A dr dr = O, (5128)
that is,
t
/0 ||UT||%2(Q)CZT + J(u) = J(ug). (5.129)
U

Now we are in the position to present the main result of this section.

Theorem 5.39. Assume that u is a weak solution of (5.116) with uy € H{(2) and
I(ug) < 0. Then
i [Ju(-,£)]72q) = +oc. (5.130)

t—+o00

Proof. Firstly, by combining (5.117) with u = ¢ we have

d 9 d / 9 /
—||u = — [ uwdr =2 | uudx
dtH ||L2(Q) dt 0 0 t

=2 <<(—As)u, u) — / u? log|u|dx) = —21(u). (5.131)
0
From last fact, (5.117) and (5.120), we get

dI(u) d 2 2
il ([u]s - /Qu 10g]u]da:>
I RLCA RO BT P

‘y—lx’Q—FQs

—Z/Qu(:c,t)ut(a:,t) log]u(:c,t)\dx—/Qu(:c,t)ut(a:,t)d:c
= 2((—Ag)u, uy) — 2/Q

:/Q|ut(x,t)\2dx—/Qu(x,t)ut(x,t)dx

= —2||ut||%2(9) - /Qu(x,t)ut(x,t)dx

u(z, t)u(z, t) log|u(x,t)|dm—/Qu(m,t)ut(x,t)dx

= 2l + o2 = [ o) loglu(z. ]da
Q

= —2||Ut||%2(9) + I(u) < I(u).
(5.132)
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Then by combining Gronwall-Bellman’s inequality and I(ug) < 0 in the last fact we
have

I(u) < I(ug)e' < I(ug) <0, V¥t € (0,400). (5.133)

It means that I(u(z,t)) is decreasing functional with respect to the argument ¢. By
setting

t
0= [ Nellsayit, 40 = o (5.134)
and by Definition 5.36 we have
A(t) = 2 / windz = —2[u], + 2 / W2 log [uldz = —21(w). (5.135)
Q Q
A simple calculation gives
;A1) A"(t)A(t) — (A'(1)?
log A = log A(t : 1
(o AD) = 2. (og A" = 225 (5.136)

Now let us estimate 2~ Az(t)(A/(t))Q. By using (5.134), (5.120) and Lemma 5.38, we
obtain

A"(t) = —21(u) = —4J(u) + A'(t) = —4J (up) + 4/t ||uT||%2(Q)dT + A'(t). (5.137)
0
Similarly, from (5.134) we obtain
(A'(1)* = llullz2() = llullz2() + 2llullz2o) luollz2i) — 2lullza@ luoll g
2
+ ||U0||4L2(Q) - ||U0||Ai2(n) = (/Q (u® —up) dx) + 2”“”%2(9)”“0“%2(9) - ||U0||i2(9)

t 2

+ 2/|ull 2y [[uoll 720y — luoll72()- (5-138)

Finally, we obtain

t 2
<A’<t>>2=4( I uTudxdr) 2l oy o2y — Nuolltaey. (5.139)
It follows that

A"(£)A(t) — (A'(1)* = —4] (u) A(t) + 4 / et 2y dr A(E) + A’ A(t)

t 2
—4( / / uTudxdT) — 2l ol 2y + [l 2
Q) (Q) (Q) (5.140)

_ (/ 1320y / Iz e <//Q““dxd)>

— 47 (uo) A(t) + A'(t)A(t) — 2luoll72()A' () + lluoll 2
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By using the Cauchy-Bunyakovsky-Schwarz inequality, we have

A"(H)A(t) - - </ iz “’dT/ Iz </ot/szuTdedT>2>

— 4T (uo) A(t) + A'(t) A(t) — 2lluo|Z2e) A'(t) + lluoll 720

> A'(f) (Aét) _ HUOH%Q(Q)> + A(t) (A/2<t) —4J(u ))
(5.141)

By using (5.134), (5.135) and I(u) < I(ug) < 0, we get

Al(t) = A(0) — Z/tl(u((IJ,T))dT = —2I(ug)t >0, t>0,

A(t) = —I(up)t* >0, t>0.

(5.142)

By combining (5.142) and (5.120) in (5.141), we compute

AW = W0 2 20 (25 = Tl ) +40) (12 - 17(w0))

Ol ) + ) (<1t = 4w

> 20 (505 g ) + A) (~ )t = 27(0) = ol

/ _I(UO)tQ 2 2
> A(t) (=5 = luollFagm ) + AW®) (=1 (w0}t +2) = fuolzey) -
(5.143)
From Definition 5.36, we have that ug € H§(£2) and let
U 22 2 2
t > to = max leollzoey 2, V2luollzzo) > 0. (5.144)
_I(u0> —I(Uo)
Firstly, let us consider the case
ug||? 2 2
b, — max luollz20) ). V2||uolra@ | _ \/_||Uo||L2(Q)' (5.145)
_I(UO) —I(Uo) —](’LLO)
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By using this fact in (5.143), we get

A"(HA() — (A'(1))?

> (0 (80— ol ) +AG) (~Tue +2) =l
>Aw(+¥?f ol ) + A (~Tuo)ta +2) = ol

o 220y = luollZaqay ) + A() (=T(uo)(to +2) = Iluoll32(ey

I(uo)(to +2) — ”u0||L2(Q )

A (
AW (-
> At ( I ( |uoll 22 )) _2+2) — ||UO||%2(Q)>

(5.146)
Hence, we obtain
A"(H)A(t) — (A'(t))? > 0. (5.147)
Similarly, in the other case
HUOH%Q(Q) luollz20) HUOH%Q(Q)
to = max { ———t) o L OIE® L T LA o 5.148
’ { 1) o) | () (5145)
we have
A"(HA() — (A'(#)* > 0. (5.149)
So we get
A"(t)A(t) — (A'(1))?
(log A(t))" = ) (A)Q(t)( ) , (5.150)
and integrating over (to,t), we have
, , A"(TA(T) — (A'(1))?
(log A(#))’ — (log A(t)) |s—sy = / AT — AV 5 (5.151)
to A (T)
Hence, we have
(log A(t))' = (1og A1) izt (5.152)

Similarly, we have

~

~
~

~

A(t(?) (t —to) = (log A(t))| =t (t — to) < /to log(A(r))'dr = log(A(t)) — log(A(to)).
(5.153)

Finally, we arrive at

Al(tg)

A(tg)e am ) < A1), (5.154)
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By summarising above facts (5.152)-(5.154) with t > ¢;, we compute

a0y = (1) = (g AW A() > (log AD)Y|—iy A(D) = %A(t) Tk A

Allto) A'(tg) o)
> A/(to)e A(tt(?) (t=to) _ ”u(.’to)”%Q(Q)eﬁ(tfto) > ||U0||%2( A(fo) (t— to)
(5.155)
That is,
2 _
t£+moo [u( )72 = +oo. (5.156)

O

Remark 5.40. In the Abelian (Euclidean) case G = (RY,+), we have Q = N and
| =1 (| |g is the Euclidean distance), if s — 1~ we get blow-up result at infinity
in [91] and |

5.7. Non blow-up and blow-up results for the heat equation on stratified
groups. Similarly to previous section, we prove non blow-up and blow-up results for
the heat equation on stratified groups.

Firstly, let us give Green’s formulae which is play a key role in our proof.

Theorem 5.41 (Green’s identity, [96]). Let @ > 3 be a homogeneous dimension of
a stratified group G and dx be the volume element on G. Let v € CY(Q)NC(Q) and
u € C*HQ)NCYQ). Then the following Green’s identity holds

/ ((ﬁv)u + UAGu) dr = u|P~20(Vu, dz), (5.157)
0 o9
where

k=1

In this section, we obtain a non-blow-up result for the following problem on strat-
ified group:
2et)  uAgu(z,t) = u(z, t) Infu(z,b)|, (z,t) € Qx (0,T), QC G,
u(as,t)‘m —0, te(0,T), (5.158)

u(z,0) =up(x) = € Q,

where Ag is the sub-Laplacian, pu is a positive constant and €2 is a bounded domain
with smooth boundary.
Let us recall the definition of a weak solution.

Definition 5.42. Let 7" > 0. A function u : 2 x [0,400) — R, u = u(z,t) €
L=(0,T;5,°(Q)) with % € L(0,T;L%(Q)) is a called a weak solution of problem

(5.158) in Q x [0,400), if ug € Sy*(Q) and u satisfies (5.158) in the sense of distri-
bution

/ uppdr — ,u/ pAgudr = / wln |u|pdz, (5.159)
Q Q Q
for any ¢ € Sy%(Q), t € (0, 7).
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Let us also recall the definition of blow-up at finite time.

Definition 5.43. Let u(x,t) be a weak solution of (5.158). We say that u(x,t) blows
up at T' < +oo if

Hm [Ju(-, )] 72(q) = +oc. (5.160)

t—=T—

We use the following notations for energy functionals

1 1
J(u) :H/ \VGu\de——/u21n|u\dx+—/ lu|?dz, (5.161)
2 Ja 2 /o 4 Jq
and
I(u) :u/ |VGu]2dx—/u21n\u]d:v, (5.162)
Q Q

where g > 0. Thus, we have

T(u) = %I(u) +i /Q luf?dz. (5.163)

Also, one of the main tool is the logarithmic Sobolev-Follan-Stein inequality which is
defined in Theorem 3.45.

Theorem 5.44. Suppose that u is a weak solution of (5.158) with ug € Sy*(Q) and
1> QCs, where Cg is the Sobolev-Folland-Stein constant. Then u does not blow-up
at finite time.

Proof. Let us define the following function:

t
At) = / e, 7).

then we obtain

A'(t) = Jlul, O)lI72 (o),

A"(t) = —2I(u).
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By using the logarithmic Sobolev-Folland-Sobolev inequality (Theorem 3.45) with
a=1, we get

A'(t)In A'(t) — A"(t) = [[ull L2 0y I [fullZaq) + 21 (u)
= 2|ullZa ) In [l L2 + 21 (w)

— 2y I [ 2y + 20| Vsl B — 2 / o In Juldz
Q
> 92y In [l 2y + pll Vestl 2oy — 2 / o In [uldz
Q
> 9oy In [0l 20y + QCs|[VulZagey — 2 / o In Juldz
Q

= QO] Veulag 2 / |u|21n’“—'da:
|UHL2

31‘)9) 2 |ul 2 |ul
/|u| In ———— dx—}—QHuHLQ 2/|u| In ————dzx
[ull2() Q [ullz2@)

= Qllul|Z2 (g
(5.164)
It implies
A(t)In A'(t) — A"(t) = QllullZ2(g) > 0. (5.165)
That is, A’(t)In A’'(t) > A”(t) which yields
In A'(t) > (In A'(2)) .
Now by integrating it over (0,t), we obtain
In [Ju(-,t)[[Z2) = I A'(t) < e'In A'(0) = €' Inlug|72(q)
Finally, we arrive at
Ju(, )l 2@ < lluollzz()- (5.166)
It means |[u(-, t)[|72 ) is bounded at finite time 7™ € (0, 00). O

Then let us show blow-up result in infinite time. Let us consider the following
initial-boundary (Cauchy-Dirichlet) heat equation on stratified groups:

Qe ) i Agu(r,t) = u(z, t) Inu(z,t)], (z,t) € Qx (0,+00), 2 CG,
( x,t) =0, (x,t) € Qx (0,+00),
u(x,0) = uo(x),
(5.167)
where Ag is the sub-Laplacian and p > 0.

Definition 5.45. Assume that u(z,t) be a weak solution of (5.167). We say that
u(z,t) blows up at o0 if

i [Ju(-,£)]72(q) = 0. (5.168)

t——+o0

We have the following energy identity for problem (5.167).
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Lemma 5.46. Suppose that u is a weak solution of the problem (5.167). Then we
have

t
| el + Ia) = Iwo), Ve € 0, +00), (5.169)
0
where the functional J is defined by (5.161).

Proof. As usual, multiplying by u; and integrating over  in (5.167), we get

/|ut| dx — /AGuutdx—/utuln|u|dx. (5.170)
Q

By using Green’s identity to the second term on the left hand side of (5.170), we
obtain

- /QAGu(x,t) u(z, t)de = /QVGu(x,t) -Veui(z, t)de = %%HVGuH%Q(Q). (5.171)
On the other hand, we have
W = 2upu In |u| + wuy, (5.172)
that is,
/ wun |u|de = Ld / u? In |u|dr — l/ uuydz
o 2dt J, 2 ),
;jt u? In |u|dx — i% Qu2dx. (5.173)

By combining (5.171) and (5.173) with (5.170), we get

d (p 2 1 2 1/ 2
L _ 1 -
/]ut| d:v+dt (QHVGuHLQ(Q) 2/Qu n|u]d$+4 Qu dx
d
:/\utde:ch —J(u) =0. (5.174)
0 dt

Now integrating over (0,t), we arrive at

¢ bdJ(u)
2 _
/O HUTHLQ(Q)dT + /0 dr dr = O, (5175)
that is,
t
/0 et 2y + (1) = J(uo). (5.176)
O

Now we are in the position to present one of the main result of this section.

Theorem 5.47. Assume that u be a weak solution of (5.167) with uy € Sy*(R) and
I(ug) < 0. Then

lim ||u(-, )||2L2(Q) = +400. (5.177)

t—+o00
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Proof. Firstly, by taking (5.159) with u = ¢ we get

d d
aHuH%Q(Q) = %/Q?fdx = 2/Quutdx
=2 (;LHV@uH%Q(Q) - /ng 1n|u|d:v) = —21(u). (5.178)
By combining last fact with (5.159) and (5.162), we get
dl d
d(t v) 4 (u!\VGu||L2 - /Qu2 ln|u|d:c)
= 2/1/ Veu - Veudr — 2/ u(z, t)u(x, t) In|u(z, t)|dx — / u(z, t)uy(x, t)de
0 Q Q
= —ZM/UtAGuda:—Q/u(x,t)ut(x,t) ln|u(x,t)|dx—/u(x,t)ut(ac,t)dx
Q Q Q
= —2/ ]ut(a:,t)\zda:—/u(x,t)ut(.r,t)d:z:
Q 0
= —2Hut||%2(ﬂ) — / u(z, t)uy(x, t)dx
Q

= —2||uellZ20) + £l VeullZaq —/uQ(%t)lnIU(:v,t)ldﬂf
Q

= 2|2y + I(w) < I(u).

(5.179)
From Gronwall-Bellman’s inequality and I(ug) < 0 we have
I(u) < I(ug)e' < I(ug) <0, Vte (0,T). (5.180)
It shows that I(u(z,t)) is a decreasing functional with respect to ¢.
By setting
t
= / [l )72 @dr, A'(t) = Ju(, )72 (5.181)
and by Definition 5.159 we have
A'(t) = 2/ wudr = —2||VGu||L2 + 2/ w? In |u|dr = —21(u). (5.182)
Q Q

Now let us estimate

ity = O (4

From (5.181), (5.162) and Lemma 5.46, we get

A'(t) = =21(u) = —4J(u) + A'(t) = —4J (uo) + 4/; HuTH%z(Q)dT + A'(t). (5.183)
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Similarly, from (5.181) we obtain

(A/(t))2 = ||U||4L2(Q) +2HU||%2(Q) ||u0||%2(9) —ZHUH%%Q) HUOH%Q(Q) + ||U0Hi2(sz) - HUOHiQ(Q)

t 2
:4</ /QuTudxdT) + 2 ull7a gy 1o ll72 ) — luoll iz (5.184)
0

Hence, we have

t 2
—a( [ [ wododr) 4 2l ol ~ Nl (5:155)
0

It follows that

A (AW - _4</ bt [ 1ol (//Q“mm))

— 4 (ug) A(t) + A'(t) A(t) — 2lJuo|Z20) A'(t) + lluol 2(q

(5.186)
From the Cauchy-Bunyakovsky-Schwarz inequality, we obtain
" , , At At
AW - A0 2 20 (25 = ol ) +40) (552 - () )
(5.187)
By using (5.181), (5.182) and I(u) < I(ug) < 0, we have
t
A'(t) = A'(0 —2/ I 7)) dT = =21 (up)t >0, t >0,
(1) = 40) =2 [ Hua7)dr = 20w}t =0, 1> s

A(t) = —=I(upg)t> >0, t>0.
By using (5.188) and (5.162) in (5.187), we calculate

" / A/ t
A (A - (A m>>Ao( 2 = Ml ) + A (552 - 47w))
~I(u
o) (=5 Iwmmm>+A@M—H%ﬁ—4ﬂwD
/ ] 2
> (0 (TS0 ~ ol ) + AW (~Tun)t — 21(00) = ol
Ug)t
zA@)C—%Q— ol ) + A (=)0 +2) = ol
(5.189)
From Definition 5.42, we have that ug € Sy*(€2) and let
U 22 2 2
i >ty = max 4 10l2@ 2, V2lollzzen | (5.190)
—I(U(]) —I('Ll,o)
Let us consider the case
U 22 2 2 2 2
fo = max I 0||L @ 2, \/_”UOHL @ _ \/_HUOHL (Q)‘ (5.191)
_I(UO) —I(Uo) —](’LLO)



133

By combining this fact in (5.189), we obtain
A"(H)A() — (A'(1))°

—I(u
> (0 (TS0~ uall ) + A (<o)t +2) = ol
—1I(u
( s ) + AW (~Tun)t0 +2) = ol
] ” 0||L2 . ||U ||2 -0
—I(ug) Olfz2(e) ‘
(5.192)
Hence, we obtain
A"(A() — (A'(#)* > 0. (5.193)
Similarly, in the other case
ul|? ul|?
to = max || 0||L2(Q) _9 ||Uo||L2(Q) _ || 0||L2(Q) _9 (5.194)
—1(uo) —1I(up) —1(uo)
we have
A"(HA() — (A'(#)* > 0. (5.195)
So we have

and integrating over (g, t), we have

t AN o / 2
(InA®)) — (InA®)) i—y, = / ATA) = (AOF (5.196)
to A%(7)
Thus, we have
(InA(t)) > (In A(t)) 1=, - (5.197)
Similarly, we obtain
A'(to) _ : t i
Alho) (t —to) = (InA(t)) 1=, (t — to) < [ In(A(7))'dT = In(A(t)) — In(A(ty)).
to
(5.198)
Finally, we arrive at
Alto)e 28 710 < A(#), (5.199)
By using above facts (5.197)-(5.199) with ¢ > ¢, we compute
2 / / (5.197) / A(t) /
[ullz2@) = A'(t) = (In A(#))'A(t) = (In A1) 1=, At) = A(tO)A (to)
(5.154) e Al(tg
> A1) 1 = (-, t0) By T 2 g Zagge T )
(5.200)
That is,
i [Ju(-,£)]72(q) = +oc. (5.201)

t—+00

O
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5.8. Blow-up results for the viscoelastic equation on stratified groups. The
following viscoelastic wave equation with weak damping was considered by Messaoudi
in [97].

t
u — Au +/ k(t — 7)Audt + alug|*u; = [uPu, (z,t) € Q x [0,T],
0

u(z,t) =0, €09,
u(x> O) = uo(x), ut(xa 0) = ul(‘r)a
(5.202)

where ug € Wy?(Q), w € L2(Q) and k € C1[0, T satisfying 1 — [° k(7)dr =7 > 0.
The author proved that any solution with negative initial energy p > ¢ blows up in
finite-time and extended the result by considering positive initial energy in [98]. We
refer [99] and [100] for the further discussions in this topic. Further, let us recall
LP(Q2)-Poincaré inequality on stratified Lie groups (see [29]).

Theorem 5.48. Assume that Q C G and f € CP(Q\ {2/ = 0}) and R’ = sup |2/|.

€N
Then we have
Rl fll, < IVeflly, 1<p<oo, (5.203)
where R = “;,_p‘.
p

5.8.1. Blow-up with strong damping. In this subsection, we consider the following
nonlinear viscoelastic wave equation on stratified Lie groups:

t
Uy — Agu +/ k(t — 7)Agudr — alAgu; = |ulP~u, (z,t) € Q x [0,T],
0

u(z,t) =0, z €,
u(z,0) = ug(x), u(x,0) =uy(z),

(5.204)
where €2 C G is a Haar measurable set with a smooth boundary 02, N > 3, where NV
is defined in (i), up € Sy*(Q), uy € L*(Q), a is a positive constant and p > 2 satisfies
the following condition.

2Q)
2 > 3. 2
Q_2>p> , Q>3 (5.205)
We assume that the function C1(0,00) 3 k : Ry — R, has the following properties:
+0o0 1
1- k(s)ds =1r > 5.206
and
k(s) >0, k'(s) <0. (5.207)

Let us define the following functional

I1(t) = % (Hut(t)H% + (1 —/0 k(S)ds) IVeu(®)|3 + ko VGu) - %Hu(t)“ﬁ, (5.208)

t

where ko Vgu = / k(t —7)||Veu(-t) — Vgu(-, 7)|5dr.

0
Let us give the main tools for obtaining blow-up result.
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Lemma 5.49. Assume that (5.206)-(5.207) hold true. Let u be a weak solution of
(5.204), then we have

(a) I(t) is a non-increasing function, i.e.,

I'(t) <0, Vtel0,T; (5.209)

t
a/ Vgue(7)||?dr < 1(0), te[0,7], a>0. (5.210)
0

Proof. Let us rewrite the equation in (5.204) as follows
t
— Agu + / k(t — 7)Agudr — aAgu; — |u[P~?u = 0.
0

Multiplying both sides by u; and integrating over €2 , we compute

t
O:/uttutdx—/utAGudx+/ k(t—T)/utAGudxdT—a/utAGutda:
Q Q 0 Q Q

- / wg|ulP2udx
Q

t
(0‘27)/uttutdx—/v(gut VGuda:—/ k(t—T)/VGut'VGUd»’UdT
0 Q

/|V¢;,ut| dm—/ o ulPudz
dt( /|ut| de + - /|V(Gu| dx——/ |u|pdx)

/ (t—7) /VGut VGuda:dT—l—a/ |Vouy|*dx
0

d (1, ) , /t /
=2 (= - — ulrde ) — | k(-  Vgudad
a7 (Gl + S19eul = Sl ) = [ kte =) [ Fou - Voudsds
+ al| Veu|?.

(5.211)
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Let us calculate the following integral.

/O k- 7) / Vour(t) - Vou(r)dedr
/ (t—7) / Veu(t) - (Veu(r) — Veu(t) + Veu(t))drdr
/ (t— ) / Veur(t) - (Veu(r) — Veu(t))dedr
+ /0 (t—7) / Veud(t) - Veu(t)dedr

1 (5.212)
——/ k(t — T)—/ \Veu(t) — Veu(t)*dedr
+1/tk(t )d/|v (t)|dxd
9 ; T dt 0 Gcu rar
1 [ d 5
=—— [ k(t—7)= [ |Vgu(r) — Vgu(t)|"dzdr
+5 [ K00 [ Woutoar
5 dt Gcu TAaT.
By direct calculation shows
1 [ d ,
— | k(t—7)—= ]VGu(T) — Veu(t)|*dzdr
Ld ,
= 5, k(t —7)|[|Vgu(r) — Vgu(t)|5dr
(5.213)

/k/t—T /]VGu — Veu(t)Pdxdr

1dkoVGu N k' o Vgu
2 dt 2

and

1/tkud/w () Pdadr —
2/, TdtQ GUu xdr =

% (/0 ’“(T)HVGUII%dT) —%k(t)HVGuH?. (5.214)

N | —



137

By changing the last expressions in (5.212), we have

/ot Kt =) /Q Veu(t) - Veu(r)dzdr

1 t
:——/ k(t—’r)i/ |Veu(r) — Veu(t)|*dedr
2 Jo dt Jq
L A 2 21
+= | k()= [ |Veu(t)dzdr (5.215)
_ 1dkoVgu KoVgu 1d ¢ 9
o A LA AL (/0 k() [Vou| Pdr

1
— SEOIVoul*

Next, by using (5.215) in (5.211) yields

d (1, ., 1 T /t /
~ (= - = fulfpdz ) = | k(- Veudzd
0= % (Gl + 51%eul} ~ Suliar ) = [ k(e =) [ oue: Veudaar
+CLHVGUtH2
a1 5 1 s Ly ldkoVgu k' oVgu
= 4 (lel? + 31veul? - Jjulpar ) + 5527 )
1 d ! 2 1 2 2
~ 57 k(D[ Veul"dr | + Sk@)[[Veull” + al| Veu]
2dt \ J, >
A (1, g, 1 , 1 [ , 1 (.
= (2||Ut|| + 2||V<GU|| - 2/0 k(T)[Veul"dr + 27€OV<GU—p||u||pdilC
1 k' o Vgu
4 k) IVoul? + | Vo 2 - 2V
dl 1 k' o Vgu
= Lk IVl + al Vo - TOY S
(5.216)
that is,
dr 1 ) , KoVgu 1 )
i —§k(t)||VGU|| —a||Veu|” + —3 = —§k(t)||VGU||
1 t
+ 5 / E(t—7)||Veu(t) — Veu(r)|]Pdr — al| Vgul]? (5.217)
0
(5.207) )
< —a||[Veuw|"
Hence, we get
dI )
pn < —al|Veuw|* <0, (5.218)

that is,
I'(t) <0.
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It means we proved the statement (a). The part (b) follows from integrating (5.218)
over (0,1)

t
I(t) - 1(0) < —a / Ve |2dr, (5.219)
0
which is equivalent to

t
) —|—a/ |Veu|2dr < 1(0).
0

Now, we present the main result of this subsection.

Theorem 5.50. Assume that p > 2 satisfies (5.205), a > 0 and k € C*[0,T] satisfies
the conditions (5.206) and (5.207). Let u be a solution of (5.204), satisfying

2
(2(u, u) + al| Vul2) =0 > ?pl(o), (5.220)
where 0 = max 0(uy) = 0(u3) with
/1/16(071)
o ool — )
O(p1) = min | ((p+ 2)aay R)? | - : (5.221)

Then, u blows up at a finite time.

Proof. Let us denote the following function:
Z(t) = 2(u, u) + al|Veu(t)[|* — pI(0), (5.222)

where p is a positive constant to be specified. By multiplying wu(t) the equation
(5.204) and integrating over (2, we have

t
(g, 1) + a(Veu, Vour) = —||Veul|? — / / K(t — 7)Agu(r)dra(t)de + [[ull.
0 Q
(5.223)
Then by using this fact, we get

Z'(t) = 2||ue||* + 2(wy, u) + 2a(Vgu, Vguy)
) ) (5.224)
= 2[|u||* — 2[|Vgul|* — 2/ k(t — 1) Agu(r)dru(t)dz + 2||u||£.
Q

By using the first Green’s identity, we compute

// (t — T)u(t)Agudrds = — // (t — 7)(Vgu(t) - Vgu(r))dedr

/ / (t - 1) Veu(t) - (Ve(u(r) — u(t)))dedr — / K(t — 1) Vou(t) |2dr
- /0 /Q k(t — 7)Veu(t) - (Ve (u(r) — u(t)))dedr — |[Veu(t)|? /0 k(r)dr

= —/O k(t — 1)(Veu(t), Ve (u(r) — u(t))dr — ||V<c,u(t)||2/0 k(r)dr.
(5.225)
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This yields
Z'(t) = 2||ue||* + 2(wy, u) + 2a(Vgu, Vguy)

:2|yut\|2—2||vGu||2—2/k(t—T>AGu(T)dm(t)dx+2||u|yg
[9]

, , t (5.226)
= 2ue]” = 2[[Vgu]” + 2/0 k(t —7)(Vgu(t), Vo (u(r) — u(t)))dr

t
+ 2||Vgu(t)]? / k(T)dr + 2|ull?.
0

On the other hand, by using Young’s inequality, we have

/0 k(t —7)(Vgu(t), Ve (u(t) — u(r)))dr < g/o k(t — 7)||Vgu(r) — Veu(t)|*dr

1 t
— tI1? | k(r)d
+ IV [ ki)

(5.227)
that is,
/ k(t — 7)(Veu(t), Ve(u(r) — u(t)))dr >
" ¢ ) . (5.228)
- g/o k(t — 7)||Veu(r) — Veu(t)||*dr — 2—pHVGu(t)H2/O k(T)dr.
Hence, in the view of (5.228), we have
Z'(t) = 2||w|]* — 2||Vgul]* + 2/0 k(t — 7)(Veu(t), Ve (u(r) — u(t)))dr
+2HVGu(t)H2/Otk(T)dT—|— Jull? (5.229)

t
> 2l|uwe® = 2l Veul* - p/ k(t = 7)|[Veu(r) — Vgu(t)||*dr
0

Ll | (r)dr + 2 Voul? / k() + 2l
4Dl + (0 —2) (1 -/ k(r)dr) IVeu()|?
—pllull? = p (1 - kde) IVeu®IP + 2]l
+2<—§/0 k‘(t—T)HVGu(T)—VGu(t)||2dT—2ip||VGu||2/O k(T)dT)
> (p+ Dl + (o —2) (1 -/ kmdf) IVeu(®)|?

1 t
— §||V<Gu]|2/ k(T)dr — 2pI(t).
0
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By using the part (b) of Lemma 5.49 it follows that
t
202 -+ Dl + - 2) (1 [ Ko)ir) [9eatol?
0
1 t
- —HV@uHQ/ k(T)dr — 2pI(t)
0

2 o Dl + o —2) (1 -/ k(ﬂdT) IVeu®|P?
1

p
(5.206

t t
\vGuH?/ k(r)dr + 2ap/ Ve (7)|2dr — 2p1(0)
0 0
) 1
2 o+ 2wl + (<p ~2)r-10- r>) IVeul?

(5.230)

t
— 2pI(0) + 2ap / Ve (7)|[2dr
0
t
=(p+ 2)HutH2 + OzHVGuHZ — 2pI(0) + 2@p/ HVGutHQdT
0
a>0 9 9
> (p+2)||w]]” + a||Veul||* — 2pI(0),

where o = ((p— 2)r — %(1 — r)) . Note that o > 0 since the condition (5.206).
Further, by using Young’s inequality, we get

2((p+ Dacyu R |(ur, )| < (p+ 2lwell® + aomRlul®.  (5.231)

Combining Theorem 5.48 with this fact, we get

t
Z'(t) > (p+2)|lwe]|® + || Veul|* — 2pI(0) + 2ap/ | Veu||*dr
0
= (p + 2)||ue||? + cap [|Vgul]* + (1 — apu)al|Veul|* — 2pI(0)

t
+2p [ |VoulPdr
0

(5.203)
> (p+2)[Juel” + aRam [l + (1 — ap)al|Veu||* — 2pI(0)

t
+ 2ap / |Veu|*dr (5.232)
0

(5.231) )
> 2((p+ 2 R)? [(u, u)| + (1 = apu)e|| Veul|* — 2pI(0)

t
+2p [ |VoulPdr
0

a>0 1
> 2((p+2)aau R)? |(ur, u)| + (1 — am)al|Veul[* — 2pI(0)

> 0(yn) (2<ut,u> + al|Vul - %]@) ,



141

where R is defined in Theorem 5.48, p; € (0, 1) is to be specified later and

0(p1) = min (((p + 2)aay R)? | M) : (5.233)

NI

Then we need to show that Ki(p) = ((p+ 2)aoz,u1R)% is strictly increasing function
for py € [0,1] with K;(0) = 0 and K;(1) = ((p+2)aaR)?. Similarly, Ko(js) =
@ is strictly decreasing function for p; € [0, 1] with K5(0) = 2 and K,(1) = 0.
Thus, 6(p;) attains its maximum at the point uy = pj, where pj is the root of the
((p+ 2)aoz,u1R)% = @ Setting

9= sup 6(m)=6(s;) and ="
p1€(0,1)
in (5.222) implies that Z(0) > 0. Hence, we get
Z(t) > 02(t),
which implies
Z(t) = Z(0) exp(6t),
that is,
Z(t) - 400 as t — +o0.
By introducing a new function
t
&(t) = [lull® + a/O IVou(r)|*dr + a(T = 1)[[Veuol*, ¢ € [0,T], (5.234)

we compute

t

d
E(t) = 2(uy, u) + al|Veul|* — al| Veuol|* = 2(uy, u) + a/ EHVGUH%ZT
0

t (5.235)
= 2(uy,u) + 2@/ (Veu, (1), Veu(r))dr.
0
It easy to see that {’(t) = Z'(t), so we have
t
"(t) > (p+2)||lwl]* + ol Veul|* = 2pI(0) + 2 / Veu|*d
€0 > o+ D)l + ol Vol = 2p1(0) + 20 [ [VemlPar

> (p+2)[lus]l* + al|Veul® - 2pI(0).
Let 0 <y <1,e > 0,75 > 0 be such that y(p +2) >4+ ¢ =, and

(P +2)lluell* + al Veul* = 2pI(0) > v((p + 2)uell* + ol Voul*) > Tp. (5.237)
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Thus, by using these facts, we have

€0 > (p+Dul’ +al Voul? ~ 2010) +2ap [ [Voudar
> (p+ Dul? +al Vol ~ 201(0) + 2ap [ [Voudar
>+ Dl + allVoul®) +arp+2) [ [Voulfdr (5259
> (4 )l + o [ Vol
= vllul? + o [ IVsulPar), 0> T

Next, from Cauchy-Schwarz-Bunyakovsky inequality yields the following estimates:

[ty )] <l (5.239)

t 2 t t
( / (VGut,VGu)dT> < / |Veu|2dr / Veu|2dr. (5.240)
0 0 0

Hence, we get

t
2(uyg,u) / (Vguy, Vou)dr
0

(5.239),(5.240) t ) 3 t ) 3
sl ([ 1eudiar)” ([ 1veurar)” 2
0 0

t t
< ul® [ 19eular )+ ul? ([ 190ular).
0 0

Hence, for t > T we get

t t
0 - 5€0F > (Il +a [ IVeular) (Jul +a [ 9o ar )
. 2
—v (Q(ut, u) + 2&/ (Vgu(), VGu(T))dT>
0
= . 2 2 . 2 ' \V4 2d 2 ! \V/ . Zd
(el Val? + allal? [ [Feutr)Par + alul® [ [Veudar

t t
+a2/ HVGutHQdT/ |Veu(r)|Pdr)
0 0
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_y<(ut7 u)® + 2a(uy, u) /Ot(VGut(T), Veu(r))dr

i ( /O t(vGut(T), vGu(T)>dT)2>

(5.239

) t t
> v(allul? [ IVeutr) P+ all? [ [Vou|Par
0 0
t t
+a2/ ||V<G,ut||2d7/ |Veu(r)|Pdr)
0 0

- 7(2a(uta u) At(VGUt(T>, VGU(T))CZT (5.242)

2

t
+a? (/ (VGut(T),VGu(T))dT> )
0
(5.240) . t ) , t )
=" (ul® [ 19eutr)Par + [ 1veular)
0 0
t

—2ya(ut,u)/0 (Veuy(7), Veu(r))dr

(5.241)
> 0.

By setting ¢(s) = &(t — Tg), where s =t — T'g, it is easy to see that
¢//¢ o %(¢/)2 Z O

Thus, there exists Tg <t < T such that

lim ¢(s) = +oo, (5.243)
t—Tp
ie.,
t
lim (||u||2 + a/ |Vgu(r)||*dr + (T — t)HVGu0||2> = +00. (5.244)
t—Tpg 0

Hence, in the view of the last expression we have
|Vgu|* = +o0, t— Tp.
OJ

5.8.2. Blow-up with weak damping. In this subsection, we consider the viscoelastic
wave equation with weak damping for the sub-Laplacian:

t
uy — Agu +/ k(t — 7)Agudr + alug%u; = |ulPu, (z,t) € Q x [0,7],
0

u(z,t) =0, x €09,
u(x,0) = ug(x), w(x,0) =uy(z),
(5.245)

where 2 C G, is a Haar measurable set with a smooth boundary 992, a > 0, p > 2
q>1,up € S37(Q), and uy € L*(Q). The function I(t) is defined as in (5.208) and
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the function k satisfies (5.206)-(5.207). Further, let p and ¢ be such that

2@ —1)
max{p, ¢} < 0-2 "

We state the following lemmas which will be useful in proving blow-up result for
(5.245).

Lemma 5.51. Assume that p,q satisfy (5.246). Then, we have
ull 7 < C (Jullz + Veul?), 2<v<p, (5.247)

where C' s a positive constant which depends only on the Haar measure of 2.

(5.246)

Proof. Suppose that ||ul[, > 1. Since 2 < v < p, Sobolev Embedding Theorem 3.45
with 2* = Qz_% yields

lully < llully < llellp + [lull3- < ully + ClVeulls < C ([ully + [Veull?) . (5.248)
Now suppose ||ul|, < 1. Let p = QQT”; with 1 < p’ < Q. Then we have the 1 < p' <p
yielding continuous embedding, i.e., LP(Q) < L (). Hence, we have

IVeully < Cl[Veull,. (5.249)
Since 2 < v, we get

(5.249)
Jull) < [Jull2 < C|VeulZ < C|[Veul? < Cl[Veull; + [Jul; (5.250)
< C (ullp + Veul?) .

0

Lemma 5.52. Assume that u be a weak solution of (5.2/5) with (5.2/6). Then we
get
lully < C(1(t) = lluell* = (ko Vgu) + [[ullp) , ¥t € [0,T], (5.251)

where 2 < ~v < p and C is a positive constant.

Proof. The function I(t) is given by

10 = 5l + (1= [ Ko ) IVeu(t13 + ko Veu) — Suto)l. 6252

Therefore, by combining (5.206) and (5. 207) we compute
20
Aol 27 (1= [ ks ) [Veutol?
020 2
"< ( ks)ds ) [Veuto)l (5.253)
) -

21(t

Now we apply Lemma 5.51 with 2 <~ < p, to obtain

|Ut( )Mz — ko Veu+ —IIUIlp

(5.253)
lull} < C (JJull2 + |Veul®) < CIE) - w|? = (ko Veu) + Jufp) . (5:254)
O
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Lemma 5.53. Assume that (5.206)-(5.207) are satisfied. Suppose u be a weak solu-
tion of (5.245), then 1(t) is a non-increasing function for t € [0,T], i.e.,

I'(t) <0, Vtelo,T). (5.255)

We omit the proof of Lemma 5.53 since it is similar to that of Lemma 5.49. The
main result of this section is the following theorem.

Theorem 5.54. Suppose that ¢ > 1 and p > max{2,q} satisfy the condition (5.240).
If (5.206) and (5.207) hold with 1(0) < 0, then solution w of (5.2/5) blows up at a
finite time.

Proof. From Lemma 5.53, we have
I'(t) <0, (5.256)

therefore,
I(t) < I(0), ¥t e[0,T].
Let us denote by Z(t) = —I(t). Then, we have

0< Z(0) < Z(t) = —I(#)

=3 (bl + (1= [ b6)as) IDautt)g + ko Veu) + Lt

1 , 1 (5.257)

t 1 1
= —5 ()l — 5 (1 - / k<s>ds) IVsu(®)ls - 5k o Vou+ - lu(®)l;

(5.206),(5.207) 1

< @l
D p

Similarly by Lemma 5.49, we get

ri rn q 1, -, 1 2(5.206)7(5.207)
Z(t) = ~I'(t) = alluly = Sk - Veu) + k(1) Veul* = 0. (5.258)

Let us also define the following function

A(t) = ZV7P(t) — e(ug, u), (5.259)
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where 0 < # < min p2p2 ppq ql }. By means of direct calculations and the Cauchy-

Bunyakovsy-Schwarz mequahty, we have
A(t) =1 =B ZP()Z'(t) — e(uu, u) — ellue®
t
=(1-p)Z7Pt)Z'(t) — ¢||Vgul|* + 6/ k(t — 7)(Vgu(T), Vgu(t))dr
0

—|—5Hu|]£—a5/ || 2 upud + ||ug|

0

(5. 22r) (5.258) 5y ) s

a(l = B)Z77 () Jwe]|§ — e Veull +€HU|\p—G€/!Ut\q urudz
Q

—l—s// (t — 7)(Veu(t), Ve (u(r) — u(t)))dvdr

T e Veu®)|P / k(r)dr + ellu?
0
C-B-8§ iy ) L )
27 1= B)Z P W)l — el Veul® + ellull? — as [ fuolusude + el
Q

e / k(t — 1) | Veul 2 Ve (u(r) — u(t)|2dr + =] Veu(t)|? / K(r)dr.
(5.260)

In the view of (5.208), we get

1 1 !
Dty =200+ 5 (T + (1= [ Ko)ds) IVeu(@P + ko Ve . (5201)
0
On the other hand, by combining (5.260) with (5.228), we have

A'(t) = a(l = B)Z (W) luellf — ellVeul® +ellully - %/ [ue| " uruda + e
Q

t

e / Kt — 1) Veul2[[ Ve (u(r) — u(t)[2dr + ]| Veu()|? / K(r)dr

(5.26

IIN’

Ya(t = A2 @) ullt - £l Voul —ae/ el *upudz + €f|u |

¢
+ Ep (ZZ(t) 4 ||| |* + (1 — / k:(s)ds) Vgul|®* + ko VGu)
0

t t
— e [ k= n)IVsulPI Vo (ur) - u(e)|Pdr + | Veut) [ k(r)dr
0 0
(5.228 iy ) o
> a(t = 2P0l + (= + F) loal? +epZ(0) — ae [ Jul' upuds
Q

(L) wovan + (5-1) - (5-1+5) [ Koir) 19l

(5.262)

=
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where 6 € (0,%). By applying Young’s inequality to estimate the fourth term on the
right hand side of the (5.262) to obtain

A'(t) > (1 - ﬁ)Z_'B(t)HutHZ + <€+ ) Hut||2 +epZ(t) — a&/Q |ut|‘1—2utud$

-FG§—€®(konO+<<g—1)—(5—1+Q;)KfﬂﬂmﬁﬂvaZ
= (1= 2 Olluly+ (= + F) hull +p2(6) = az [ " *upuda

+ eC1(k o Vgu) + eCy||Vgul||* + epZ(t)

> q ((1 _ gz

)Huth (¢ + ) lhual® + Ca(k 0 Vou)

)\q
+ 2G| Vaul? - anung +epZ(t), YA >0,
(5.263)

where

_p NN S R
1= —0>0, 02_(2 1) (2 1+45)/k(7)d7>0.

Then, by setting A% = xZ?(t) we get

w0 2a (0927 = 20 g+ (= + L)

cal?

+eCy(k o Vgu) + epZ(t) + eCy||Vgul|* —

Jul
] (5.264)
—a (=8 -Z) 20l + (s + L)l + <o Vew

1—q
+eCy||Veul? + ¢ (pZ(t) - %z—ﬁﬂ—wnungf]) .
Next, from (5.257) and the fact that LP(Q) — L%(Q) for p > ¢, we have
1 B(g—1)
Jull2 < C ( ) | g PP, (5.265)
p
The last inequality applied to (5.264) yields

A’<t>za(<1—ﬁ>—2—x)zﬁuutuq (c+ ) ] + <k o Viou)

)

(0=~ 2) 200l + (o + L) hul? + <Cy(bo Veu)

+eCy||[Vgul|* + € (pZ(t) —
(5.266)

axl_q 1 /B(qfl)
+ 602||V(Gu||2 +e|pZ(t)—C . (]—)) ||u’|g+ﬂp(q—1) ‘
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Now, by applying Lemma 5.52 with v = g+ 6p(q — 1) < p.

A(t) = a ((1 -8 - —X) 2 ullg + (= + ) llual® + C1(k 0 Vu)

ql

v oVl + = (2 - 2 (N
o[[Veull* + ¢ | pZ(2) T\ [[ull}

(5.251) c e
a ((1 _B) - q—X) 77 |u |7 + (g + Ep) g2 + £C1 (k © Vigu)
+eCy||Veu||* + € (pZ(t) + Ot (Z(t) + |we]|? + (ko Vgu) — ||u||§))
EX

_ p _ _
> a((0=8) = Z) 27l e (5 + 1+ Co =) ul? = Clx

+ & (C1+ C1x'79) (ko Vgu) 4+ eCo||[Veul]® + £ (p+ Cix' %) Z(1),
(5.267)

ao(%)ﬁ(qfn

where C = . From assumption I(t) < 0, that is,

(5.268)
By setting p = 2b+ (p — 2b) where b = min{C}, C5} and letting x to be large enough
in (5.267) we have

A(t) > a ((1 8- %) Zugl|2 + e (Z(2) + fug]) + [Jul]?+ k o Vu),
(5.269)

where o > 0. Next, we choose sufficiently small € so that (1 — §) — 2+ > 0. Thus, we
have

A(t) > eo (Z(t) + |lwel|® + ||ull2 + k o Veu), (5.270)
and
A(0) = Z'7P(0) + e(ug, uy) > 0.
Hence,
0 < A(0) < A(t), Vt e [0,T].

Now, by using the Cauchy-Bunyakovsky-Schwarz inequality, embedding of spaces and
Young’s inequalities, we have

1

1

1 1 1 1 =
[ (e, w) |77 < el |77 fJul =2 < Clluel| =7 flullp™ < C (lully + lull?),  (5.271)

with ﬁ + ﬁ = 1. By Lemma 5.52, we obtain

[, w)| 7 < C(Z(8) + [Jull?+ |Juel® + k o Vigu) . (5.272)
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From this fact, we calculate

Al) = (Zl‘%f) + €<ut,u>)ﬁ <275 (20) + [(ue,w)| 77

<275 (Z(t) + O (Z(t) + [ullh + lue|® + k 0 V) (5.273)
gcﬂz@+wmw+HmW+koV@o
< CA'(t), Vtelo,T).
Hence,
1_
AT () > o - j ) (5.274)
C(L—BATT7(0) — 16
therefore, we arrive at
1—
T < C(—BL). (5.275)
B(A(0)) ™=
Therefore, A(t) blows up in finite time. That is,
lim [|[Vgul = 4o0. (5.276)
t—Tpg
O

5.9. Kato type exponents for the wave Rockland equations. In one of the
most popular works of Kato he considered the following problem:

O?u(w,t)
ot?
for N > 1 and p > 1, with the Cauchy data

u(z,0) = up(w), w(r,0) =u(z), =RV

— Au(z,t) = Ju(z,t)|P, (z,t) :=RY x (0, 4+00), (5.277)

For the wave problem (5.277), Kato’s result states that if u is a generalised solution
of the problem (5.277) with wug,u; € C§°(RY), suppu C {|z| < R+ t} and

/ 2| tug(x)dz > 0, /ul(:v)da; > 0,
RN RN

where

0 if N is odd,
n(N) :{ 1

5 if N is even,

then the solution u cannot be globally (in time) defined if

N +1
l1<p< . 5.278
PN (5.278)
The exponent p* = % is usually called the Kato critical exponent for the problem
(5.277).
The wave equation on the Heisenberg group H" studied in [101], where the authors
concerned the following problem

0*u(zx,t)

52 Agru(z,t) = |u(z, t)|P, (z,t):=H" x (0, +00),
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with the Cauchy data
u(z,0) = ug(x), w(x,0)=u(z),

where p > 1. Also, in the paper [102] it is considered a space—fractional analogue of
the non-linear wave equation on the Heisenberg group
0*u(z, 1)

T + <_AH")S|u($7t)’m = ‘U,(I‘,tﬂp, <x7t) = H" x (07 +OO>7

with the initial conditions
w(z,0) = ug(x), w(x,0)=u(z),

where (—Apgn)® is the fractional sub-Laplacian on H", s € (0,2), m # 1, p > 1.

In this dissertation we are not only interested in studying of the wave equations,
also, the pseudo-hyperbolic equations and systems on graded Lie groups are in the
field of our interest. In particular, we extend nonexistence results obtained by Véron
and Pohozaev [101] for the hyperbolic equation and by Kirane and Ragoub [103] for
the pseudo-hyperbolic equation and system on the Heisenberg group to the case of
the graded Lie groups.

5.9.1. Wawve equation case. Assume that m > 0 and let consider the Cauchy problem
for the nonlinear Rockland wave equation

utt($7t) + R\u(m,t)]m - ’u(x>t)‘p> ($7t) € G x (O7+OO) = Q?
u(x,0) = uo(z) 20, z€G, (5.279)
u(z,0) = uy(x), x €G.

where R is the Rockland operator in the following form:

0]

n vy 27
R=> (-1)"¢X;",
j=1

where v; € N, ¢; € R, j =1,...,n, and 1y is any common multiple of vy,..., v,
([3, Lemma 4.1.8]). By ¢; € R, j =1,...,n, we can choose R such that it will be
positive. Also, we introduce this operator in the Section 2.2.

Let us give definition of the weak solution of the Rockland wave equation (5.279).

Definition 5.55. Assume that uj,uy € L} (G). We say that the function u €

loc

LY Q) (Qp = G x (0,T)) is a local weak solution of (5.279) if the identity

loc

2
/ u(w,t)mdxdt+/ lu(z, t)|"Rp(z, t)dzdt
Qr ot? Qr

= —/uo(:v)de—l—/ul(x)go(:v,O)dx—i—/ |u(z, t)|Po(x, t)dzdt, (5.280)
G ot G Or
holds for all test functions

p € C*((0, T L*(G)) N C([0, T); H'(G)),
such that v = 2 max Doz, T) =0and ¢ > 0. If T = +o0 then u is called a
j=l..,n i

1111

global weak solution.
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Here, the space H7(G) is the homogeneous Sobolev space related to the Rockland
operator R, for more details, see [3, | and Section 2.2.

Theorem 5.56. Assume that G be a graded Lie group with homogeneous dimension
Q>2andp= max 2 be such that p@Q > 1. Assume that p > 1, and [;u(v)dx >

j=1,..., n
0. Then if

nQm +1
1<m<p<p=—+—
SM<P<Pc ,U/Q_17

the Cauchy problem (5.279) admits no non-negative global weak solution other than
trivial.

(5.281)

Proof. We prove this theorem by contradiction. Suppose that there exists a weak
solution u for some 7" > 0. By using (5.279) and Definition 5.55, we get

do(x,0) »
—/(}uo(a:) 5 dx+/@u1(93)go(:v,0)dx+/ |u(z, t)[Po(x, t)dedt

Qr

2o(x,t
_ / VL) (0, t)ddt + / lu(z, )[R (x, £)dadt. (5.282)
op Ot Qr
By choosing ¢(x,t) such that
Oy
—(z,0) = 0.
2 0,0

By using e-Young’s inequality
11
ab <ead’ +CE)W, —+—==1, a,b>0,

p 7
we obtain
Jun@ete 0o+ [ Jutanpete. s
G Qr
2 t
:/ %S?)u(:c,t)dxdtjt/ |u(z, t)|" Rp(z, t)dxdt
Qr at Qr
1 L 0% =
< = Podxdt Tp1 dxdt
_4/QT]u|gox +C QTW 52 T

1 P m
41 / Ppdzdt + C [ [R[7m o #mdadt. (5.283)
4 QT QT

Then, we have

/ |u|pg0dxdt§/ul(w)ga(m,())dx—f—/ |ulPpdxdt
Qr G

Qp
_1 |0
g C/QTSO Pt 8t2

Assume that ® : Ry — [0, 1] be a smooth nonincreasing function such that

1, ifo<z<1
O(2) ::{’1 0sz=1, (5.285)

= . m
4 dxdt+0/ (Ro|7m o rm dudt.  (5.284)

Qr

0, if 2 > 2.



152

For R > 0, we define

|m‘2 t2
oat) =0 () o (—=).

where & € C*°[0, +00). By Denoting the following vector fields acting to the variable
X; = ,X;. By denoting Q) :={z € G:0< |z] <2} and Qy :={t: 0 <t <2}. By
substituting x = R*x and t = R» =t and from Proposition 2.4, we get

| 1Rotast) |77 o
Qr

[

P

1/0 VO

(=1)v X 7 o(x, t) go_wimdxdt

n vop VO f m
= [ SR )X, )| o
or j=1 (5.286)
“*-l?f?_’iﬁ = m
’ < =T Z ~X g& z,t) @ pmdxdt
— R RMRy=m / IRzp(R'E, Renl)|7m o~ vom didl
Q pa
TR P—m
< CR#Q*Z,D:F;L
and also,
p+1 %p(x,t) "
/QT@ p— 1(1‘ t) ‘g&(l’,t)T dxdt
D?p(RT RE%V) g '(p-1)
ptl ~ . p=l~ - p—1 ~ , frp—m —2p (p—1
= [ o R R |, R T R dwdt
Qr ot?
< RQ’ZI(’;”W%;’ZL/ » v 1(RT, Rl
QL.
TR P—m
L Po(RE R
o(r7, g LD R | e
ot?
< CRM 5%
(5.287)
Hence, we have
/ ulPpdadt < CRMO #m (5.288)
Qr

If1<m<p<pc=“QC;”J;1 with u@QQ —1 >0 and R — oo, we get

/ |ulPdxdt < 0. (5.289)
Qp
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Therefore, we get u = 0. That is a contradiction, completing the proof. O

Corollary 5.57. In the Abelian case (R™,+) with Q = n, R = —A, and by taking
Fuclidean distance instead of the quasi-norm, we claim the well-known results by Kato

[105].

Corollary 5.58. By Lemma 4.1.7 in [3], if G is a stratified Lie groups with R =
—Ag = =Y. X?, where Ag is a sub-Laplacian (i.e., vo = 11 = ... = v,, then
pw = 1), we obtain Kato’s exponent for the wave equation with the sub-Laplacian on
stratified Lie groups.

Corollary 5.59. That is a well-known one of the particular case of the stratified Lie
groups 1is the Heisenberg group ([3, p.174]). So, then in the case of the Heisenberg
group with m =1 and m € N we obtain the results by [101] and [102], respectively.

5.9.2. Wawve equation with linear damping term. In this section we consider the initial
problem for the wave equation on the graded Lie group

g (2, t) + Rlu(z, )|™ + w(z, t) = |u(z, )P, (z,t) € G x (0, +00) := Q,
w(z,0) =ug(x) >0, z€G,
u(z,0) = uy(x), x €G,
(5.290)

where R is the Rockland operator in the form

2¥0

R:Z(— Jc]X N
j=1
and m,p > 0.

Definition 5.60. Suppose that u;,ug € LL.(G). We call that u € L™} ()

loc

(Qr =G x (0,7)) is a local weak solution of the equation (5.290) if the identity
&p(z, 1) m
u(x,t)Td xdt + lu(z, t)|" Rp(z, t)dxdt
QT QT
dp(x, 1)
— t dxdt
/QT u(z,t) 5 O
- [l (o0 + 22Dy G20
G ot
+ / uy (x)p(z,0)dx
G
+ [ Jute Pt st
Qp

holds for all nonnegative test functions
p € C*((0,T]; L*(G)) N C'([0, T); HY(G)),

such that p(z,T) = 0. In the case T' = 400, the solution of the equation (5.291) u is
called a global weak solution.
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Theorem 5.61. Let G be graded groups with the homogeneous dimension () > 2 and
[ = max Z—; Assume that p > 1 and [ ui(z)dz > 0. If

2
l<m<p<p.=m+—, 5.292
HQ (5:292)

then the Cauchy problem (5.279) admits no global weak nonnegative solution other
than trivial.

Proof. Similarly to the previous theorem, we have

/ |u|pgpd:cdt§/ul(x)go(x,O)d:c—i-/ |ulPpdxdt
Qr G

Qr
1
< C/ p i
Qr

—1—0/ |Rp|7m o~ 7 dadt
Qr

e /
Qr
p/
J,

go_z’ljdxdt < 00,
/ ul” pdadt < CRMO 7. (5.293)
Qr

p/

dxdt

2

7o

p/

0 1
Ld @ r1dxdt.

ot

By assuming

dp

ot

we obtain

. 201~
By substituting = RFx and t = R vom  with 1 < m < P < Pe=m-+ % and,
letting R — oo, we get

/ |ulPodzdt < 0. (5.294)
Qr

Hence, we get u = 0. 0
Corollary 5.62. In the case, if G is a stratified Lie groups with R = —Ag =
— > " X2, where Ag is a sub-Laplacian (i.e., vo = v1 = ... = vy, then p = 1),

we obtain Kato’s type exponent for the linear damping wave equation with the sub-
Laplacian on stratified Lie groups.

Corollary 5.63. In the case of the Heisenberg group we obtain the result by [102].

5.9.3. Pseudo-hyperbolic equation case. In this subsection we show blow-up result for
the pseudo-hyperbolic equation with Rockland operator on graded Lie groups in the
following form:

u(z,0) = up(x), us(x,0) = uy(x), reG. (5.295)

Let us give definition of the weak solution of the (5.295).

{utt + Ruy + Ru = |ulP, (z,t) € G x (0,T) :=Qp, p>1,
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Definition 5.64. We say that u is a local weak solution to (5.295) on Q with initial
data u(z,0) = uo(x) € L}, (G), if u € L} (Qr) and satisfies

loc loc

/‘M%wﬁf/mww@m+ﬂﬂ%mw
Qr G
—Awmw%mm+n%mex

= / upydrdt + / uRpdrdt + / uRpdx, dt
Qr Qp Qr

for any test function ¢ with ¢(z,T) = ¢i(x,T) = 0. The solution u is said global if
it exists on (0; 00).
Theorem 5.65. Let G be a graded Lie group with homogeneous dimension ) and

j= max 2 be such that p@Q > 1. Assume that u; € L'(G) and
i= n

-----

/ uydz > 0. (5.296)
G

If

1<p§pc:1+

2
0T (5.297)

then there exists no nontrivial global weak solution of (5.295).

Proof. Firstly, we consider the case 1 < p < p.. From Definition 5.64 with p;(x,0) =
0, we obtain

[ redad + [ wiipte,00de = [ updri
Q G Q

+/Rugpttdxdt+/u7€g0dxdt—/ul(x)Rgo(m,O)dx
Q Q G

<

/ uppdrdt + / uRpdzdt
@ . (5.298)

+/uRapdxdt—/ul(:v)Rap(m,O)dx
0 G

§/|ug0tt|da7dt+/|uRgott|dmdt
Q 0

—i—/ ]uRw\dmdth/ |u ()R (x, 0)|d.
0 G

Then from the Young inequality, we have

1 1
/wmmwﬁ=/MWwPMMMt
Q Q

Se/ |u]pgoda:dt—|—c€/(p_pil|90ttlpfldxdt,
0 Q
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/]uHRgpttldtdaj §5/ |u|pgpdtdx—|—cg/g0zfl]Rgptt\z’pldazdt, (5.299)
Q 0 Q
and
/\uHR@]dtdac §8/ |u\p<,0dtd:c+c€/go_Pil]R(p]pfldxdt, (5.300)
Q Q Q

for some positive constant c.. From using above facts, we get

/|u|pgoda:dt+/u1(x)go(x,0)dx
Q G

(5.301)
<0 (404 B0 + Gyl + [ (o)l Rtz Ol )
where
Ap(p) = / 07 |y | 7T dadt, (5.302)
Q
By(p) = / o 7T | Ripy |71 durdlt, (5.303)
Q
Co(p) = / 71 [Rp| 77 dadt. (5.304)
Q
Let us choose the following test function
|ZE|2 t2
er(z,t) = N P ) R >0, (5.305)

with the following property

1, ifo<r<i,
O(r)y=qN\, ifl1<r<2,

0, ifr>2,
where ® : R, — [0, 1] is a sufficiently smooth nonincreasing function. We note that
dpn(e,t) 2 (2P ., (£
—— === | D, | = 5.306
ot R? Re ) '\ R?2)’ ( )
we have Don(z.0)
PR\, 0
———= =0. 5.307
T (5.307)

Let us estimate A,(¢r), By(¢r), Cp(¢r). By choosing variables + = R*T and t = Rt,
then
Q:={7€G:0<|z| <2} and Q:={7:0<¢><2}. (5.308)

By using Proposition 2.4, we calculate

Ator) = [ [ lonta.pl

B,(pr) < CR*T1737, (5.310)

2pp(,1) |77 .
0905_;;6,)‘ dedt < CRCY=7T (5.300)

and ,
Cylor) < CRMOTIT5T (5.311)



157

Also, we get that
|Ror(z,t)| < CR™2 (5.312)
By combining the estimates (5.309)-(5.311) in (5.301), we get

/ |ulPrdrdt + / uy(z)pr(x,0)dx
' < §<RMQ+1—Z,2_”1 | RERHLGE | peQitl-h
(5.313)
[ @) Rentz, o)
<C (R“QHpQPl + /~ |u1(x)||Rng(x,0)|dx) :
On the other hand, we get ’

liminfR_m/ |u|pngdxdt—i—/ul(x)ng(x,O)dx
Q G

> lim inf /]u\pgoRda:dt
R— Q

R—o00

+lim inf / uy (z)pr(z,0)d.
G
By using the monotone convergence theorem, we obtain
lim inf / \ulPordrdt = / |ulPdxdt.
R—o0 Jq 0

Since u; € L'(G), by the dominated convergence theorem, we have

lim inf /G s (2) oz, 0)dz = / s (2)d.

R—o00 G

Now, we have

lim inf (/ |u|pngd:pdt—|—/ul(x)goR(x,O)dx) 2/|u|pdxdt+d,
R—o00 Q G Q

d= / uy (z)dx > 0.
G

By the definition of the limit, for every € > 0 exists Ry > 0 such that

/|u|pg03dxdt—|—/ul(x)goR(x,O)da:
Q G

where

> lim inf (/ |ulPordrdt + / uy(z)pr(x,0)dr) — e
> / |uPdzdt + d — ¢,
Q
for every R > Ry. By taking ¢ = %, we have

/|U|pSORd$dt+/U1($)¢R(x,0)dx2/|u]pdxdt+é,
Q G Q 2
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for every R > Ry. Then from (5.313), (5.312) and u; € L'(G), we have
[ st + 5 < 0 (R 4 [ @iRente0lar )
sc(m%kﬁ+32[mmmm) (5.314)
0
<C (RO 4R,

Thus, we obtain

we +1— —— <0,
p—1

or

p<1l+4

2
pQ —1°
If R — oo, we get
[
/ \uPdzdt + = < 0.
O 2
This is a contradiction. Finally, we obtain
[
/ﬁmma+-:o
Q 2

Let us consider another case p = 1 + —2

By using (5.314), we have

pQ—1"
/ lu|Pdzdt < C < o0, (5.315)
Q
then
lim / |u|Pprdxdt = 0. (5.316)
R—o0 Jq

Using the Holder inequality instead of Young’s inequality in (5.298), we get

1
d »
/ |ulPprdedt + - < C (/ ]u|pg03dxdt) :
Q 2 Q

If R — oo then by combining the above facts, we have

d
/ |ulPrdrdt + = = 0.
Q 2

This contradiction completes the proof. O
Corollary 5.66. In the case, if G is a stratified Lie groups with R = —Ag =
— 3" X2, where Ag is a sub-Laplacian (i.e., vo = vi = ... = vy, then p = 1) and
c; =1, j =1,...,n, we obtain Kato-type exponent for the linear damping wave

equation with the sub-Laplacian on stratified Lie groups.

Corollary 5.67. In the case of the Heisenberg group, in particular, we obtain the
results of the paper [103].
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5.9.4. The case of system. Let us consider the system of the pseudo-hyperbolic Rock-
land equations with the Cauchy conditions:

we + Ruw + Ru = [o|?, (2,1) € G x (0,T) :=Qr, ¢>1,
vi + Rog + Ro = [uff, (z,t) € G x (0,T) :=Qp, p>1,
u(z,0) = ug(z), us(r,0) = us (), = €G,
v(r,0) = vo(x), ve(7,0) = vi(x), v €G.

(5.317)

Firstly, let us give a definition of the weak solution of (5.317) in the following form:

Definition 5.68. We say that the pair (u;v) is a local weak solution of (5.317) on
G with the Cauchy data (u(z,0);v(x,0)) = (ug;ve) € L, .(G) x L,.(G), if (u,v) €
LY (Qr) x L (Qr) satisfies

/Q \v\qgodxdt—i-/ 1(z)(p(2,0) + Rep(z,0))dx

uo(z)(pe(x,0) + Repy(x,0))dx

\@\

uppdrdt + /

uRpudxdt + / uRpdzdt,
Qp

QT QT

and

/Q |u]pg0da:dt+/le(:(;)(go(x,O)—ingo(:c,O))d:c

- [ w0 + R (. 0)da

:/ vgpttdxdt+/ ngottdmdt—l—/ vRpdxdt,
QT QT QT

for any test function ¢ with ¢(-,7") = ¢;(-,7") = 0. The solution is said to be a global
if it exists for T = +oo0.

Now we present the main result in the system case.

Theorem 5.69. Let G be a graded Lie group with homogeneous dimension ) and
p= max L be such that uQ > 1.Assume that (ur,v1) € L'(G) x LY(G) with

/uld:p >0, and /vldx > 0. (5.318)
G G

If1 <pq < (pg) =
solution to (5.517).
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Proof. Similarly, with the of single equation with ¢;(x,0) = 0, we get
/ |v|?pdxdt + / uy(z)p(x,0)dz
Q G
< / ul [ puldedt +/ [l [ Repu|
) Q

T / ul[Repldrdt + / s (9) || Reg (i, 0)|de
Q G

and

/\u|p<pd:cdt+/v1(x)<p(x,0)dx
0 G
S/|v||<ptt|dxdt+/|v||Rgptt|da:dt
Q 0

—l—/\vHRgp\dzdt—l—/ |v1(2)||Rep (2, 0)|d.
Q G

By choosing ¢ = @g, the test function given by (5.305) and from the Hélder inequal-
ity, we calculate

/Q ol rdadt + / wn (@), ) — / ju(2)[Repliz, 0)|

< (Ap(0R)T + Bolon)'T + Cylior) ™ (/ IU|p90Rd:cdt>l,

where A,(¢), B,(p) and C,(p) are given in the single equation case. Similarly, by
the Holder inequality, we have

/Q ulP prdadt + / o1 ()p(z, 0)dz — / jor ()] [Rep (i, 0) |

< (Aflen)T + Bylor) T + Cylon) ' (/Iv!qudxdt)l

Assume that for the large R, we get

/u1 x)er(z,0) dx—/ lui(z)||Rer(z,0)|dz > 0,
© (5.319)

/v1 z)er(z, Od:v—/|v1 )| Rer(z,0)|dz > 0.
G

Then, we have

/‘U‘QSORdedtS (Ap(er) 5 + B,(¢r) = +Cy(¢r) T (/ |u]pgoRdxdt) , (5.320)
Q

and

/|u|pngdIdt§ (4, (SOR); + B, (¢ )q; +Cy(pr) T (/ |v|q<dexdt) . (5.321)
Q
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By choosing variables t = R™t and 7 = R™*x, we get

/ o|tprdedt < CR* 5 < / ’u|P¢Rdxdt> , (5.322)
Q Q
and
pQ(g—1)—(g+1 %
/ ulPopdrdt < CR™ ( / \v|qg0Rd93dt) . (5.323)
Q Q
By using the last two inequalities, we have
1—L1
(/ ]u\pngdxdt> < CR™, (5.324)
Q
and
1—L
(/ |v\quRdxdt) < CR™, (5.325)
Q
where
o = MR —1) —pg—2q -1
pq
and
0, = MQPe—1) —pg—2p—1

pq
Then we need aq, s < 0.
Secondly, let us consider the case 1 < pg <1+ ﬁ max{p + 1;q + 1}.

Case 1: 1 <pg<1+ ﬁ max{p + 1;¢ + 1}. By letting R — oo in (5.324) with

1 < q < p, we have
/ |ulPdzdt = 0,
Q

which is a contradiction. Similarly, in the case 1 < p < ¢, from (5.325), we have

/ |v|?dzdt = 0.
Q

2_max{p + 1;¢ + 1}. This case is similar with the proof of

nQ—1

Case 2: pg =1+

Theorem 5.65.
O

Corollary 5.70. In the case p = q and u = v in Theorem 5.69, we arrive at a single
equation given by Theorem 5.05.

Proof. From Theorem 5.69, we get

2(p+1)

2

p §1+—a
pQ —1

and

TopQ -1
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Then dividing both sides by p + 1, we obtain

1< 2 (5.326)
p—1= . .
pQ —1
O
Corollary 5.71. In the case, if G is a stratified Lie groups with R = —Ag =
— > " X?, where Ag is a sub-Laplacian (i.e., vo = v1 = ... = vy, then p = 1),

we obtam Kato’s type exponent for the linear damping wave equation with the sub-
Laplacian on stratified Lie groups.

Corollary 5.72. In the case of the Heisenberg group, in particular, we obtain the
result by [103].

5.10. Fujita type exponents for the heat Rockland equations. In the one of
the most popular works of Fujita in [100] considered the nonlinear heat equation
{ut(x,t) — Au(z,t) = ul*? (z,t) € RY x (0, 00), (5.327)
u(x,0) = up(z) >0, v €RY,
for the subject of blowing up. He obtained that if 0 < p < % a solution of the problem
(5.327) blows up in finite time for some o € RY, N € N. One of the further general-
isations of the problem (5.327) is considering the fractional Laplacian (—A)® instead
of the classical Laplacian —A. Namely, in [107, , | the authors considered the
following Cauchy problem. In this dissertation we show Fujita’s exponent for the
heat Rockland operator and we show necessary condition for the global solvability.
The critical Fujita exponent determined as p* = 1 + 2 for the pseudo-parabolic
equation in the Euclidean case were firstly established 1n the papers [110], [111].
In [112] authors studied the nonexistence of the global solutions to the nonlinear
pseudo-parabolic equation on the Heisenberg group

Uy + (_AH")mut + (_AH")mu = ’u|p7 (77a t) € H"™ x (07 00)7 (5328)

with the Cauchy data
where m > 1,p > 1, Ay is the Kohn-Laplace operator on (2 x 2)-dimensional

Heisenberg group H". For more details, the reader referred to [112] and references
therein, [113], [L14].

5.10.1. Fujita exponent for the Heat Rockland equation. Let us consider the Cauchy
problem for the nonlinear heat Rockland equation in the following form:

ug(z,t) + R¥{u}™(x,t) = uP(x,t), (x,t) € G x (0,4+00) := Qy,
u(z,0) =ug(x) >0, z€G,

where a > 0, m € N, and R is a Rockland operator of the k-th order, that is,

R = Z Jc] ]

By R~ We understand fractional Rockland operator as Proposition 2.14. Let us denote
by € (QT) the space of test functions ¢ with a compact support suppy C Qr

(5.330)



163

such that ¢, d;p and R%p are continuous functions on 2y with compact supports
supp Oy, supp R*p C Qp, where Qr := G x (0,T) for some T > 0.
Let us give a definition of the weak solution to the equation (5.330).

Definition 5.73. Fix T' > 0. Assume that ug € L'(Q7) (Qr = G x (0,T)). Then we
call the function u € LP(Qr) N L™(Qr) a local weak solution of (5.330) if the identity

— / u(z,t) w dedt + | {u}™(z,t)Rp(z, t)dzdt
QT QT

:/uo(x)gp(x,O)d:B—l—/ uP(z,t)p(x,t)dxdt, (5.331)
G

Qp

holds for all positive test functions ¢ from @3,} (Qr) such that ¢(z,T) = 0.
If it is allowed to be T' = +o0 then u is called a global weak solution of the equation
(5.330).

Theorem 5.74. Assume that G be the graded Lie group with homogeneous dimension
Q > 2. Assume that

1<p§pc:m+a. (5.332)

Then the Cauchy problem (5.330), admits no global weak nonnegative solutions other
than trivial.

Proof. We prove this theorem by contradiction. By using (5.330) and Definition 5.55,
we have

/ |u\pg0dxdt§/ \u|p<pdxdt+/uo(x)<p(a:,0)dx
Qp

Qr G
= —/ u(a:,t)Mda:dt—i— C/ lu(z, t)|"RYp(x, t)dxdt,
Qr ot Qr

(5.333)

for some constant C' > 0.
From s-Young’s inequality

1., 1 1
abgsal—l——bl,j—kﬁ:l, a,b>0,
s
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we get
dp(,t) mpa
uPodrdt < — u(x,t)a—dxdt +C lu(z, t)|" R p(z, t)dxdt
Qr Qr t Qr
t m m
:/ go_%M(—u(x,t))goidxdthC o lu(z, )" R¥p(z,t)p »dxdt
Qr ot Qr
1 Y | D" 1
< —/ upgodxdt—i-Cl/ P 9¢ da:dt—l——/ uPdxdt
+Co [ PR gl o
Qr
1 Y || i .
= —/ upgodxdt—l—Cl/ Y P |= dxdt—i—Cg/ pr=m|R%p|r=m dzdt,
2 Qr Qr Qr
(5.334)
where
_7 |0y ¥ _m P
4 o v |—| dxdt+ Cs pr=m |R%|r=mdxdt < oo (5.335)
Qr at Qr

and C, C4, (s are positive constants, then

/ upgodxdthl/ gp_p? Op
QT QT

Let @1, P, : R, — [0,1] be smooth nonincreasing functions such that

ot
1,if0<2<1
) = ’ - =7 .

() {0, if z > 2. (5.337)

o(z,1) = D (%) ® (%) .

By substituting variables z = RZ and ¢ = R°f and by using Proposition 2.4 and
(5.335), we get

p/

dxdt + Cy / orm | Re| 7 mdrdt.  (5.336)

Qr

For R > 0, we define

o t ﬁ P
/ w‘p(x,ﬁ‘a@(% )‘ ddt < CR™P71+Q0, (5.338)
o0 ot
and
/ prm | RO | dudt < CR ™ 7m T, (5.339)
Qr

Then by from (5.338) and (5.339), we have

P

/ |uPpdadt < C(R™PratQHF 4 prkestn tQ 8y (5.340)
Qp
Let us choose f = Q(m — 1) + ka. Then, if 1 <p <m+ %a, we obtain

/ uPdrdt = lim uPdxdt < 0. (5.341)
Qr

R—o0 Qr
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Hence, u = 0. This is a contradiction. O

5.10.2. Necessary conditions for local and global existence. In this subsection we
present necessary conditions for the existence of local and global solutions to the
equation (5.330).

Theorem 5.75. Suppose p > m and o > 0. Assume that u be a local solution to
(5.330) for T < co. Then we have the estimate

lim inf ug(z) < C T, (5.342)

|z|—o00
for a positive constant C', where }—17 + z% =1.

Proof. By denoting the following test function

oz, = @ (%) o (%) , (5.343)

where @ is a smooth nonnegative function with a compact support and
t (1-2%), 0o<t<T
Dy [ = ) = T - 5.344
’ <T ) {0, t>T, (5:344)

where [ > p’ — 1. By combining Definition 5.73 and s-Young’s inequality, we get

/uo(x)go(:v,O)d:I:—l—/ uPoddt
G

Qr

—/ Mu(a:,t)dxdt—i— {u}™(z, t)Rp(z, t)dxdt
op Ot Qr

- [ e st [ o) Rl ) dud
QT QT

1 o |0
< —/ uPpdxdt + C'/ QP Ld
2 QT QT

' 1
dxdt + = Podrdt
5| 4 +2/QT|U|<,0x

+C'/ 4,01;7%
Qp

R |7 dadt

' P’ . .
= / uPpdrdt + C T %—f dxdt + C pr=m |R%p|r=m dxdt.
Q Q Q
’ ' ’ (5.345)
Finally, we have
_ | Op p/ N
up(z)p(x,0)de < C [ ¢ » 5 dedt +C | pr=m|RYp|p=mdedt. (5.346)
G Qr Qr

By substituting ¢ = Tt and = = RZ and by using Proposition 2.4, we get

R° / uo(RE)®,(%)di < CROT / ®,(7)di + CTRO v / ®,(T)dz, (5.347)
G G G
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and, we obtain

/Guo(R:f)fbl(%)ng C’Tfl/

®,(7)di + CTR / o, (7)d7
G

G

—p’ kap

_ (T + TR 5 / By (7)dF. (5.348)

Hence, we obtain

C(T + TR ») / dy(T)dT > / uo(RT) D, (T)dT
G G

— inf (uo(R7)) /G O, (7)d7, (5.349)

a@)>1
and by dividing to [, ®1(Z)dT both sides, we get
ka

inf uo(R%) < C(T% +TR »m). (5.350)

q(Z)>1

By letting R — oo, we have

/
-p

lim infug(z) < CT» . (5.351)

|z| =00

OJ
Now, we show a necessary condition of the existence of the global solution.

Theorem 5.76. Assume that p > m and o > 0 be such that 0 < v < p’i—“m. Suppose
that the problem (5.330) has a nontrivial and nonnegative global weak solution. Then

the initial function ug satisfies the condition

|1|im inf (up(x)|z|") < C, (5.352)

where C' 1s a positive constant independent of w.

Proof. Continuing discussions of the proof of the previous theorem, by (5.348), we
have

! kap

/ uo(RE)®(F)dz < C(T» + TR »m) / O (7)d7. (5.353)

From supp ® C {z: R < |z| < 2R}, we obtain

|z|>R

inf (uo(x)|z]") /@, O(3)|R7| 7

< / uo(RT)|RZ|P 1 ®(Z)|RZ|* 7 dT

£ ) (5.354)

< C(TF +TR %) / RE[D(3)| RE| - d3
G

/ kap
—m

<CO(T» +TR»

VR /G ®(7)|R7|d7.
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Since 0 < v < £ we have
p—m

inf (uo(z)|z]’) < C(T+ + TR v

|z|>R

)R (5.355)

By changing T = R"®"~Y | we get

inf (uo(x)|a]) < C(1+ RGPy, (5.356)

|z|>R

and as R — oo, we have
inf (ug(x)|z]”) < C. (5.357)

|z|—o00

O

5.10.3. Fujita exponent for the pseudo-parabolic Rockland equation. In this subsec-
tion, we concern nonexistence of global weak solutions to the following nonlinear
pseudo—parabolic equation

ur(z, t)+Rug(z, t)+Ru(x, t) = |u(x, t)|P+ f(z,t), (z,t) € Gx(0,00) :=Q, (5.358)
under the initial condition
u(z,0) =up(x), xe€G. (5.359)

Similarly, with the heat Rockland equation case, We denote by Qfgtl (Q7) the space
of test functions ¢ with a compact support supp ¢ C Qr such that ¢, dyp, Ry and
0, R are continuous functions on €2 with compact supports supp 0, supp R, supp O, Rp C
Qr.

Definition 5.77. We say that u is a global weak solution to the problem (5.358)—
(5.359) on Q with the initial data u(-,0) = ug(-) € L, .(G), if u € L? (Q) and satisfies

loc

/|u|p<pdxdt+/uo(x)gp(:v,())dx+/fcpdxdt
Q G Q

(5.360)
= —/ugotdxdt—l—/u(Rgp)tdazdt—/uRgpda:dt+/uo(x)R<,0(x, 0)dx
Q Q Q G

for any regular test function ¢ with ¢(-,t) = 0 for large enough t¢.
For R > 0, we define
Ir={(z,t) e Q:0<t <R 0<|z|] <R}
Theorem 5.78. Suppose that R is a Rockland operator of k-th order. Let ug € L'(G)
and f~ € LY(Q), where f~ = max{—f,0}. Suppose that

/ updx + }%im inf [ fdzdt > 0. (5.361)
G

—00 FR

Ifl<p<p=1+ %, then the problem (5.358)—(5.359) does not admit any global
weak solution.



168

Proof. Suppose that u is a global weak solution to the problem (5.358)—(5.359). Then,

we have

/|u\pgpdxdt—|—/uo(:v)gp(a:,O)dx—l—/fgpdxdt
Q G Q
g/\u||got|dxdt+/ |u||(R<p)t|dxdt—/\u||7€go|dxdt
Q Q Q

+ [ lun(a)|[Replz, 0)ds
G
By using the e-Young’s inequality
| 1
ab<ea’ +C(E)’, —+—- =1, a,b>0,
p p
with parameters p and p/(p — 1), we obtain

/|u”90t|dl’dt§€/ |u|pg0dxdt—|—c€/(pp_—lllwt|;£1dxdt7
Q Q Q

for some positive constant c..
Similarly, we have

/ lul|(Rep):|dwdt < e / uPodzdt + c. / o7 T |(Rep)| 7T dadt,
0 0 Q
and
/\uHRgp]da:dt §5/ |u|pgpdtdt—|—cE/gpzﬂ\Rgo\z’pldtdt.
Q 0 Q
By using (5.362)-(5.365), for € > 0 small enough, we have

/\uﬂpdwdt—i—/uo(a:)ap(x,O)dx—F/fg&dxdt
Q Q Q

< C(4(0)+ Bylo) + o) + [ )| Rt 0)jr).
where

=1 _p_
Ap(p) = /st1|sot|f’1dxdt,
=1 _D_
B,(p) = / o | (R |7 ded,

Colp) = / 01| Rep| 7T dadt.
Q

Let @1, Py : Ry — [0, 1] be smooth nonincreasing functions such that

N0, it p > 2,

fori=1,2.
Now, for R > 0, let us consider the test function

er(z,t) =P <%> Dy (%) )

(5.362)

(5.363)

(5.364)

(5.365)

(5.366)

(5.367)
(5.368)

(5.369)

(5.370)
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for some a > 0 to be defined later.
We observe that supp ¢g is a subset of
Qr={(z,t) € Q:0<t<2R% 0<|z| <2R},
while supp 0;pr, supp Rer and supp 0;Rpr are subsets of
Or ={(z,t) € Q: R* <t <2R“, R <|z| <2R},

also, we put
Ir={(z,t) eQ:0<t<RY 0<|z| <R}
It follows that there is a positive constant C' > 0, independent of R, such that for
all (z,t) € Qr, we have

[Rapr(t, x)] < CR™Fx(t, ), (5.371)
where x(t, z) is a nonnegative function with a compact support in Qg, and

0, Rpgr(t,z)| < CR™"€(t, x), (5.372)
where (¢, x) is a nonnegative function with a compact support in Qg.
Using (5.371) and (5.372), we get

Ap(p) < CRwT, (5.373)
By(¢pr) < CR 1", (5.374)
C)(pr) < CRw . (5.375)

Let us consider now the change of variables

t=R“, &=R'x.
Put X ={r € G: R < |z| <2R}.
By combining Proposition 2.4, (5.373), (5.374) and (5.375) in (5.366) we get

/|u]pg0Rd:cdt+/uo(x)goR(a:,O)da:dt—l—/f@Rdxdt
0 Q 0

< O(RM +RM 4 R 4+ / |u0(v)||RgoR(0,v)|dv>, (5.376)
2R
where
)\1 = Q + o — ﬂ
p—1
and L
p—1
and "
)\3 = Q + o — —p

p—1
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On the other hand, we have

lim inf(/ |u\pngd:vdt—|—/uo(:v)goR(a:,O)d:E+/fgoRdmdt>
Q G Q

R—o0

> lim inf/ |ulPordrdt + lim inf/ug(x)wR(:c,O)d:c—i— lim inf/fgoRd:cdt.
Q R—o0 Q R—o0 Q

R—o0

From the monotone convergence theorem, we get

lim inf/\u]p@Rdxdt:/Mpdxdt.

Since ug € L'(Q), by the dominated convergence theorem, we have

lim inf /G o(x) oz, 0)dz / o).

R—o G

By denoting f = f* — f~, where f* = max{f,0}, we have

/ fordxdt = fdxdt + fropdodt — [ ordxdt
Q FR @R @R

2/ fdxdt — [ prdxdt.
I'r Or

Since f~ € LY(Q), by the dominated convergence theorem we have

lim f prdxdt =0

R—o0 Or

Then

lim inf/ ferdzdt > lim inf fdxdt.
R—oo Q R—oo Tr
Then, we get

lim inf(/ |u|p<dexdt—|—/uo(m)goR(x,O)d$+/fchdxdt>
R—o0 0 Q Q

> / |ulPdxdt + ¢.
0

where form (5.361),

ﬁz/uo(x)dxjt lim inf/ fdxdt > 0.
Q R—o0 Tr

By the definition of the limit inferior, for every € > 0, there exists Ry > 0 such that

/|u|pngdxdt+/uo(as)goR(:v,O)dx+/fgoRdxdt
Q Q Q
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>1%1m mf /|u|pgoRdxdt+/u0( Jor(x,0) d:E—{—/fngda:dt>
Q
Z/|u\pd:cdt+€—5,
Q

for every R > Ry. Taking ¢ = ¢/2, we get

/]u|pg0Rdxdt+/uo(ac)ch(x,O)dx—i—/fgoRdxdt
Q Q Q

2/\u|pd:1:dt—l-£,
Q 2

for every R > Ry. From (5.376), we have

14
/ |u[Pdadt + 5 < O(RM + R» 4+ RY +/
Q

Xr

[uo(2)[Rapr(a, 0)ldz),  (5.377)

for R large enough.

Now, we take a = k and require that A = max{\;, Ay, A3} < 0, which is equivalent
tol<p<1+ % We consider two cases.

e Case 1. If1<p<1+g.

In this case, letting R — oo in (5.377) and using the dominated convergence
theorem, we obtain

12
/ \ulPdzdt + = <0,
0 2
which is a contradiction with ¢ > 0.
e Case 2. pr:1+g

In this case, from (5.377), we obtain
/ |ulPdzdt < C < 0. (5.378)
Q

By using the Holder inequality with parameters p and p/(p — 1) and from (5.362),
we get

4 v
/ lulPdzdt + - < C(/ |u\pngd;1:dt) :
Q 2 Or

By letting R — oo in the above inequality and using (5.378), we have

l
/ |ulPdzdt + - =0
Q 2
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This contradiction completes the proof of the theorem.
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6. APPENDIX

In this appendix we deal with new inequalities related to the fractional order differ-
ential operators. Especially, the Caputo derivative analogues of the above inequalities
are in the field of our interest. Here, we derive the generalizations of the classi-
cal Sobolev, Hardy, Gagliardo-Nirenberg and Caffarelli-Kohn-Nirenberg inequalities.
Note that in this direction systematic studies of different functional inequalities on
general homogeneous (Lie) groups were initiated by the book [1]. Also, we obtain
these inequalities for Hadamard fractional derivative.

One of the Lyapunov’s classical result in [67], he established that if ¢ € C ([a, b]; R),
for the boundary value problem

u”(t) + q(t)u(t) =0, = € (a,b),
{uu(z)): 5<(b§=(2), =t (6.1)

has a nontrivial classical solution, then we have

[lalas> = 62)

In [115], Hartman and Wintner generalised Lyapunov’s inequality, it means if (6.1)
has a nontrivial solution, then
b

/(b —5)(s—a)g*(s)ds > b—a, (6.3)

a

where ¢*(s) = max{q(s),0}. Generalisation of the Lyapunov’s inequality (6.2) can

be obtained from (6.3) using the fact that Igag;b(b— s)(s—a) = %. Recently, some

Hartman-Wintner-type inequalities were obtained for different fractional boundary
value problems [110, .
In the [118], De La Vallée Poussin showed the following result:

Theorem 6.1. Suppose that u € C*([a,b]) is a nontrivial solution to

_u//(x) — ({L‘)u’(l‘) = f({p)u(x)’ T € (a’ b)7
{ u(a) =0, Z(b) =0, (6.4)

for f,g € C([a,b]). Then
(b—a)?
2 )

1< My(b—a) + M, (6.5)

where My = max |g(z)| and My = max |f(x)|.
z€[a,b] z€[a,b]

As example, generalisation of the inequality (6.5) can be found in[l119, 120]. Also,
generalisation of above inequalities to the multidimensional case were generalised
in the works [121, |. Motivated by the above cited works, using the approach
introduced in [121, |, some generalisations of above mentioned inequalities are
established for fractional partial differential equations with Dirichlet conditions. Our
results are natural generalizations of results in [122, ]. In this dissertation, we
established these inequalities for the fractional order derivatives.
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Let us recall the Riemann—Liouville fractional integrals and derivatives. Also, we
give definitions of the Caputo fractional derivatives. In ([123], p. 394) the sequential
differentiation was formulated in a way that we will use in the further investigations.
We refer to [124, 123] and references therein for further properties.

Definition 6.2. The left Riemann-Liouville fractional integral I, of order av > 0,
and right Riemann-Liouville /;* of order 0 < o < 1 are given by

t

B0 = s [ 0= s e (@]
and “b
B0 = g [ =07 s 1€ )

respectively. Here I' denotes the Euler gamma function.
The left Riemann-Liouville fractional derivative Dy, of order « € R (0 < o < 1)
of a continuous function f on [a, b] is defined by

d —a

Dy [f](t) = %I;J“ [f] (), for any t € (a,b].

Similarly, the right Riemann-Liouville fractional derivative Dy of order a € R (0 <
a < 1) of a continuous function f on [a,b] is given by

Dy [11(0) = 10 f10). for any 1€ [a.b)
and
D3 (1) = SR 1710, € (a)],

respectively and f € AC(a,b]. Here I" denotes the Euler gamma function.
Since I*f(t) — f(t) almost everywhere as v — 0, then by definition we suppose

that I°f(t) = f(t). Hence D, f(t) = f'(t).

Definition 6.3. The left and right Caputo fractional derivatives of order @ € R
(0 < a < 1) of a differentiable function f on [a,b] are defined by

D, [f1(t) = Dgy [f (1) = f(a)], ¢ € (a,0],
and

Dy [f1(t) = Dy [f (£) = fF(D)], t € [a,b),
respectively.

Remark 6.4. In Definition 0.3, if f(a) =0, then D, = D¢ .

Proposition 6.5. If f € L'([a,b]) and o > 0, B > 0, then the following equality
holds

I§+If+f(t) = I:iﬁf(t)-
Proposition 6.6 ([123]). If f € L'([a,b]) and f’ € L'([a,b]), then the equality
15D f(t) = f(t) = fla), 0 <a <1,

holds almost everywhere on |a, b].
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Let us give some defintion of the Hadamard fractional derivative.

Definition 6.7. The left Hadamard fractional integrals J;, of order o > 0, and
derivatives D, of order 0 < o < 1 are given by

0= [ (0e2) 70 % re @,

and

0L 10 = e | t (18) r L e

Here I' denotes the Euler gamma function.

Proposition 6.8 ([123]). If f € L'(a,b) and ' € L' (a,b), then the equality

3005 f() = f(t) = fla), 0 < < 1,
holds almost everywhere on |a, b].

Then let us define weighted Lebesgue space with the norm:

el o= (/ ju(a d"”") (6.6)

Proposition 6.9 ([123]). If f € Li(a,b) and a > 0,8 > 0, then the following
equality holds :

jZ[+3a+ (t) = ﬁaJrﬁf( t).
Let us give definitions of the fractional and fractional p-Laplacian on R”:

Definition 6.10. Let Q@ C RY be a bounded open set, 0 < s < 1. The fractional
Laplacian operator of order s of a function u € Cg° (RN ) is defined by

s o U(x) —u(y ) N

where B(z,d) is a ball at centered at € RY with radius ¢.

Definition 6.11. Let Q C RY be a bounded open set, 0 < s < 1 and 1 < p < 0.
The fractional p-Laplacian operator of order s of a function u € C§° (RN ) is defined
by

SN ot Ju(z) — u(y) P> (u(z) — u(y)) N
(—A)u(r) = 2(1;{1(1) s, i — g dy, ©€RY.  (6.8)

In this appendix we derive the main results of the dissertation. In this subsection
we show fractional order Poincaré-Sobolev type inequality.
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6.1. Poincaré—Sobolev type inequality for the Caputo fractional derivative.
Theorem 6.12. Let u € LP(a,b), u(a) = 0, D¢ u € LP(a,b) and p > 1. Then for
the Dy, Caputo fractional derwative of order o € (%, 1] we have the inequality

1
b—a)*
|| oo (ap) < ( a>p;1 [z uHLP(ab) (6.9)

2= t) 7 Tl
Proof. Let v € LP(a,b), u(a) = 0, Dy, u € LP(a,b) and consider the function
u(t) = I3, Dgyu(t). (6.10)
Using the Holder inequality with & —|— = =1, we obtain

18 D2 u(t)] < —/\ )* D u(s)| ds

¢
1 aqg— p
Sm /(t—s)qqu /’DaJru )|” ds

a>1 — a71+%
Zr (t—a) T /’DaJru (s)|” ds

(b o a)a71+%

P

~
=

< 1P Lo
(ag —q+1)a T(a) (?)
b— “p
- 0= I D +uHLpab)
(g —q+ 1)« I'(e)
(b—a) .
= N ||Da+“HLp(a DK
(3% - %) 7 @
where ¢ = z% > 1.
Then,
1
o o (b—a)* 7
[ull (@) = 12 Dayull Lo oy < — D%l ey (6:11)
=) T T
showing (6.9). O
Remark 6.13. In Theorem 6.12, by taking 1 < q < 0o, we obtain
1,1
(b—a)* »"a
[l Lo(ag) < =) | Dy “Hm (@) (6.12)

(7% - 7)) 7 Tl

Theorem 6.14. Also, Theorem 6.12 holds for the Riemann-Liouville derivative.
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Proof. By Theorem 6.12, we have u(a) = 0 and by using Remark 6.4, we have DS, =
Dy, OJ

Let us also present the following result.

Theorem 6.15. Let DS v € LP(a,b) with p > 1 and let B € [0,1) be such that
a e (5 + %, 1} Then for the Caputo fractional derivative Da+, we have

D2l (ay <

||D (6.13)

HLP(a b)’

foralll <p<q< oo, where%jtézl.

Proof. By using Definition 6.3 and Properties 6.5, 6.6 we introduce the function
Diu(t) = 177/ (t) = 1577 L/ () = 1577 Dgu(t). (6.14)

Using the Holder inequality with 1 s+ % =1, we get

1
L Dy u(t)| < m/‘(t— ) IIDY u(s)| ds

1
t P t

3=

1 P
S m /(t — S)aq—,@q—qu / ‘Dﬁu )‘ ds
(t =)t ety as |
= 1 a ) ds
(aq — Bg—q+ 1) (o — f) a/| o)
(t—a)y AN
= 1 a ) ds
(ag — g — g+ 1)1 T(a — B) /' o)
(b—a) "

HD W[ oy

= 1
(g — Bg—q+1)2T(a = f)
where by assumption a > 5 + %, we have aqg — q — g+ 1 > 0. From this, we obtain
(b—a) "

1
(aq = Bg—q+1)s (e = p)
showing (6.13). O

1D | oo (apy <

||D | oy (6.15)

Remark 6.16. In (6.13), if 5 =0, we obtain Sobolev type inequality.
Remark 6.17. In Theorem 6.15, by taking 1 < q < oo, we get

1,1

T T
(ag — Bg—q+1)1 T(a — f) ped

D2 ull ooy < (6.16)
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6.2. Hardy type inequality for the Caputo fractional derivative. Let us show
Hardy inequality.

Theorem 6.18. Let a > 0, u(a) = 0 and D v € LP(a,b) with p > 1. Then for the

Dy, Caputo fractional derivative of order oo € (110, 1] we have the inequality

al(b—a)®

< ~ D° 6.17
LP(a,b) (% _ L) Tl F(a) H + ( )
p—1 p—1

2]

- “Hm(a,b) :

Proof. From a < z < b we have % < % < % By using Theorem 6.12, we calculate

1

(/ab ‘“(xﬁd:ﬁ) o (/abx_p|u(:p)|pd$);

< a flulloa (6.18)
(6.9) -1 b— «
< D5l
(2 -:5) 7" T
showing (6.17). O

Theorem 6.19. Also, Theorem 6.18 holds for the Riemann-Liouville derivative.

Proof. The proof is similar with Theorem 6.14. U

Let us give the weighted one-dimensional Hardy type inequality.

Theorem 6.20. Let a > 0, u € LP(a,b), u(a) = 0 and Dy, u € LP(a,b) with p > 1.
Then for the Dy, Caputo fractional derivative of order oo € (%, 1] and v € R, there
exists C' > 0 such that

u
x')/“rl

< a/_h/l_lbh/l(b — a)a
@h) "~ (aq—q+1)7T(a)

(67
Dg,u

x”

(6.19)

LP(a,b) '
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Proof. Let us divide the proof in two cases 7 > 0 and v < 0. Firstly, let us prove the
case v > 0. From a > 0, we have b-7"! < 27771 < 7771 so that

b ()P % o b %
([ tifan) < ([ |u<x>|pda:)
(6.9) —-=1(p _
< a7 (b—a) (/ | Dy u]pda:>

%_L S
p—1 1

—y—=1(p __ « b »

et ( [ionara)

(25— 7)) " Do)

1

a7 (b — a)® D& ul? »
< - 1<T> (/G|N|dx>

(7% - 75) 7 T
’Dﬁu

x”

a (b —a)®

(aq—q+1)7 T(a)
Let us show the case v < 0,

1 1
"lu(z)lP |\ *lu()P  \”
(/a x('v+1)pdx) - ( u 2 (vp+p) dx)

b p P
co ([ e,
a xP
(6.17)

LP(a,b) '

a o7 (b —a)® N
< 1 p1 ”D “HLP(ab)
17—
__ e (/ |Da+u|pdx)
(;TP - ﬁ (6.21)
“1p=7(h — q)® b pp ’
- _¢ ( ;p (/ —|Da+u]pdx>
(25 - ,,+1) " T(a)
a7 (b — </ |Dgyul? u|p >
(o)
p—1 p—1
A V(b—a)a ' D2 u
- p—1 )
o 1\ » TV | Lo (ayp)
(7% - 55) 7 T
implying (6.19). OJ

Remark 6.21. Also, Theorem 6.20 holds for the Riemann-Liouville derivative.
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6.3. Gagliardo-Nirenberg type inequality for the Caputo fractional deriv-
ative. Now, we are on a way to establish the Gagliardo-Nirenberg inequality for
differential operators of the fractional order. We show that the Sobolev type in-
equality that is given by Theorem 6.15 implies a family of the Gagliardo—Nirenberg
inequalities.

Theorem 6.22. Assume that o € (é, 1], 1 <p,q < oo. Then we have the following
Gagliardo-Nirenberg type inequality,

[ullzr @ty < CIDG ull zaas el ogap): (6.22)
with
1 —
x5 vd—s) _ 1, (6.23)
q p

where s € [0, 1].

Proof. By using the Holder inequality with % 420

=) 1, we have
p
b b
[ u@rde = [ a2z
(1-s)

< </b |u(:v)|qd:1:) ’ (/b |u($)|pd;p) o (6.24)

(69 (1-s
< Izl e ),
showing (6.22). O]
Remark 6.23. Also, Theorem 0.22 holds for the Riemann-Liouville derivative.
Let us consider the space H¢(a,b) with o € (3,1] in the following form:
H%(a,b) := {u € L*(a,b), D, u € L*(a,d), u(a) = 0}.

A special case of Theorem 6.22 important for our further analysis is that of ¢ = 2
and « = 1, in which case we obtain a more classical Gagliardo-Nirenberg inequality:

Corollary 6.24. We have the following Gagliardo-Nirenberg type inequality
s 1-s
[l < Cllullz o el ogae (6.25)
for s € [0, 1].
We also record another more general special case of Theorem 6.22 with ¢ = 2:

Corollary 6.25. Let o € (%,1} . We have the following Gagliardo-Nirenberg type
inequality,

lull ey S Nullfg o 1l as): (6.26)

for S=5+ 175, where s € [0, 1].



181

6.4. Caffarrelli-Kohn-Nirenberg type inequality for the Caputo fractional
derivative. Then let us now show a fractional Caffarrelli-Kohn-Nirenberg type in-
equality.

Theorem 6.26. Assume that a > 0, o € (1 — %,1), 1 <pg<oo, 0<r < oo,
and p+q > r. Let 0 € [0,1] N [=2, 2] and c,d,e € R with the%—i—lf(S = %,
c=0(d—1)+e(l—0) and u(a) =0. If 1+ (d —1)p > 0 then we have

lz“ull 2@y < CllaDe el o e ull oty (6.27)

Proof. Case 0 = 0.
If 6 =0, then ¢ = e and ¢ = r. Then (6.27) is the inequality

lz“ull 7 (ap) < ll2°U]| L7 (a,p)-

Case 0 = 1.
If 6 =1, then we have c = d—1 and p = r. Also, we have 14+c¢p =1+ (d—1)p > 0.
Then by using weighted fractional Hardy inequality (Theorem 6.20), we obtain

Hmcuum(a,b) <C H*xCHDng

=C ||de§Jr

u
HLP(a,b) (628)

u”LP(a,b) .

Case § € [0,1] N[=4, 2.

By assumption ¢ - d(d — 1) + e(l — 0) and by using Hélder’s inequality with

% + ? = 1 we calculate

1
b r
leull o) = ( / a:”]u(a:)de)

- ' Ju@)l” |u<x>|<1-6>fdx)i (6.20)

u 2or(l—=d)  p—er(1-9)

1-6

Hu

rl-d

Lr(a,b) 1 7¢I La(a,b)

By using weighted fractional Hardy inequality (Theorem 6.20) with 14 (d—1)p > 0,
we obtain

0 1-9

Li(a,b) (630)
< Clla Dy ull ol ull agy by

u

||l‘cu|lL’“(a,b) S ” fbd‘
rl-

LP(a,b) H ¢

completing the proof. O
Remark 6.27. Also, Theorem 0.26 holds for the Riemann-Liouville derivative.

6.5. Sequential Derivation Case. In this subsection we collect results for the se-
quential derivatives. Indeed, it is important due to the non—commutativity and the
absence of the semi—group property of fractional differential operators.
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6.6. Fractional Poincaré—Sobolev type inequality for sequential fractional
derivative.

Theorem 6.28. Let D7, u(a) = 0, DjJerJru € LP(a,b) with a € (%,1) and €

(0,1). Then the following inequality is true
(b—a)*>

(ag—q+1)7 T(a

1D ull oy < HD D4l

6.31
LP(a,b) ( )

with & + ¢ = 1.
Proof. We consider the function

D, ult) = 12, D2, DL ut). (6.32)
Using the Holder inequality

1
Ia 'Da Da+u( )‘Sm/’(f— )a 1Da Da+u( ) ds
¢ 1 1
t [t v
< L /(t s)*ds / Dy, D? (s )pds
~ I'(«) ot
a a A
t— a—l-‘,—% P
S Gl i /‘p D2 u(s )‘pds
(ag—q+1)* I'(a)
b . a— 1+
N T
(ag—q+1)aT Lp(ad)
Then we have
1
b—a)*
Plimn < O ]
(ag—q+1)sT o
completing proof. O
Remark 6.29. In Theorem 6.28, if 1 < 6 < oo, then we have
b—a) e
||D5+U||L0(a,b) < ( S HD a+ ‘ )
(ag—gq+1)7T Lr(ah)

6.7. Fractional Hardy type inequality for the sequential fractional deriva-
tive. Now we show the following sequential fractional Hardy inequality.

Theorem 6.30. Let a > 0, v € R and D2, u(a) = 0 and D3‘+D5+u € L*(a,b) with
a € (E’ 1) . Then the following inequality is true

12
Loyt <C HD a+u

LP(a,b)

(6.33)

Lr(a,b)

21,1
wzthl—)—i-a—l.



183

Proof. From a < x < b we have 1 < < =. By using Theorem 6.28, we calculate

< / ’Da+“ ) :( / bx_p|Df+u($)|pdx);

< oDl ot (6.34)
(6.31) -1 _
2 at(b—a) HD a+u ,
(ag—q+1)7T Lr(ab)
showing (6.33). O

6.8. Fractional Gagliardo-Nirenberg type inequality for the sequential frac-
tional derivative. In the same way as Theorem 6.22 is proved, we can prove the
following statement.

Theorem 6.31. Assume that 1 < p,q < oo, and let a € (0,1) be such that 5 €
(%,1). Suppose that D Df+u € L%a,b) and Diu € LP(a,b). Then we have the
following Gagliardo-Nirenberg type inequality,

sy (A—s)y
/ D%, u(a)[Vda < ( / D2, D2 () \qu) ( / D u(x ]pdx) . (6.35)
with
1
sy, =)y o (6.36)
q P
where s € [0, 1].
Proof. Let us calculate the following integral:
/ D, ()" = / 1D, ()| [D2, ()]~ da
(A-s)y (637)

)
< ([ mtorar)” ([ 1onatopa)

s 1-—
57, d=s)y

q p
Then by using Theorem 6.28, we obtain

with
=1. (6.38)

(A—s)y

/a 1 Dayu(z)|"dr < ( / Do u(w )1%)85 ( / D2, u(x )|pdx> ’
(623)0( / DI, DS u(x yqu>;( / D2, u(x ypdx>

The theorem is proved. 0J

A—=s)y

(6.39)
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6.9. Poincaré—Sobolev type inequality for the Hadamard fractional deriv-
ative. In this subsection we show fractional order Poincaré—Sobolev type inequality.

Theorem 6.32. Let a > 0, u € LP(a,b), u(a) = 0, D3, u € L (a,b) and p > 1.

p
Then for the ®3, Hadamard fractional derivative of order o € <% ] we have the
inequality

log 2[*77 N
1wl oo (apy < log 2| = ||CDa+u||Lp1 e (6.40)

(=) t@

Proof. Let u € LA (a,b), u(a) = 0, D%, u € LP(a,b) and consider the function

u(t) = 35, Dg ult). (6.41)

Using the Holder inequality with 113 + % = 1, we obtain
a—1
t d
(1og ) D%, u(s)| 2
s

1,1
spta

3=

1
t 7/t
1 t|*d d
< (o) / 10gg ?S /‘@g+u(5)‘p§
o>l tOé 1+ P
v } ‘ /|@ )|p§
(aq—q+1 s

log &

sl L PO

}log ‘

= (aq—q+1) T H© uHL” (a,b)
loga o
logs"" josul,,

1 (a7b) ’
x

(=) T

where ¢ = -5 > 1, showing (6.40).

OJ
Remark 6.33. In Theorem 6.52, by taking 1 < 6 < oo, we have
1
(b—a) log 2"~
[l zo@p) < ’ ,,_1| H@ UHLp (ab) (6.42)

(7%~ 7)) 7 Tl
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6.10. Hardy type inequality for the Hadamard fractional derivative. Let us
show Hardy inequality.

Theorem 6.34. Let a > 0, u(a) =0 and D5, u € LA (a,b) with p > 1. Then for the

D5, Hadamard fractional derivative of order o € (%, 1} we have the inequality

“1(h— a)7 |log £|° 7
Lp(ab)sa (b—a) |1;);g1a\ 198l 1 0y (6.43)
() T T w

|2

Proof. From a < x < b we have % < % < % By using Theorem 6.32, we calculate

(/ab |u<;)|pdx>; - (/b x_p|u(az)\pda¢);

<a! »
<a ullz (a,b) (6.44)

1
(6.40) g~ 1(h — 7 oo 2197 %
49 a”! (b~ a)? [log

(7% —75) 7 Tl

[

“HLPl (a,b)’

showing (6.43). O

Let us show weighted Hardy inequality with Hadamard derivaive.

Theorem 6.35. Let a > 0, u(a) = 0 and D%, u € L4 (a,b) with p > 1. Then for

the ®g, Hadamard fractional deriwative of order a € (%, 1] and v € R, we have

inequality

u Do u

xY

(6.45)

Y+

gc'

Lr(at) " (ah)
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Proof. Let us divide the proof in two cases 7 > 0 and v < 0. Firstly, let us prove the
case v > 0. From a > 0, we have b7} < 27771 < g7}

, 1 X 1
u(@)”  NT ’
( mdw <a ! |u(z)[Pdx

(6.40) =7~ 1(b — )7 |1
S Ul LO? (/ |@5:+u|pdx)
(% -54) 7 T

B a*V*I(b—a)% ‘logﬂa_% (/b x7p|© |pd:v)
w1\ ety (6.46)

_1 1
7 [log 2|" P DY ulPdr\ "
= T
[(«)

3=

1

a7 a)%bV‘logJ D2 u

B « pi"%l 7 L% (a,b .
(3% - 55) " T e

Let us show the case v < 0,
[u@)P 7 _ (@)l \?
ulx P u(x P
(/ v+1)p ) - </a 2 (vp+p) d:v)
1
b P
- (/ |u(x)‘pdx)
a ':Cp

1
649 bV (b — a)7 [log 2|77
< s el o2l

p—1

(7% - 75) " T

b b= flog Tt L de
= 1 1Dg +u| -
(7% - 75) 7 Tl

b flog T ()
= » ; ijl . 7P a+ T
(% -74) " @

_ b7 (b—a)s [log 2| < ]®a+u]pdx>;

P T

(6.47)

Do u

x7
LA (a;b)
xT
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showing (6.45). O

6.11. Fractional Gagliardo-Nirenberg type inequality with the Hadamard
derivative.

Theorem 6.36. Assume that o € (é, 1] , 1 <p,qg<oo. Then we have the following
Gagliardo-Nirenberg type inequality,

[l 7oy < ClDg UHL‘I a1l ooy (6.48)
with
1 —
75y (-8 _ 1, (6.49)
q p

where s € [0, 1].

Proof. By using the Holder inequality 2* + @ =1, we have

b b
/ fu(z)[Vdz = / (@) Pl ) da
y(A—s)

( / ju(z !qu>t( /ab\u(x)\pdx) ’ (6.50)

1
A it

< C||© |
completing proof. O

6.12. Fractional Cafarrelli-Kohn-Nirenberg type inequality with Hadamard
derivative. Then let us show fractional Cafarrelli-Kohn-Nirenberg type inequality.

Theorem 6.37. Assume that a > 0, a € (1—%,1), 1 <pg<oo 0<r <o
such that p +q > r. Let 6 € [0,1] N [=2,2] and ¢,d,e € R with thei—l—%‘s = %,
c=0(d—=1)+e(l—=0) and u(a) =0. If 1 4+ (d — 1)p > 0 then we have

C (0% 5
2 ullzr oy < C D%l oy Il sy (6.51)

Proof. Case § = 0.
If 6 =0, then ¢ = e and ¢ = r. Then (6.27) is the inequality

|zul| L (apy < 12Ul L7 (a,p)-

Case 0 = 1.
If 6 =1, then we have c = d—1 and p = r. Also, we have 14+c¢p =1+ (d—1)p > 0.
Then by using weighted fractional Hardy inequality (Theorem 6.35) we obtain

[z“ull poop) < C “xc+1©3+u||y; (a.b)
T

=C de93+“||Lg (ab) *

(6.52)

Case § € [0,1] N [=2, E].

T



188

By assumption ¢ = 6(d — 1) + e(1 — §) and by using Holder’s inequality with
+ % =1 we calculate

1
b T
leulzron = ( [ #luto) o)

_ ( )| fu()] 0 dw)i (6.53)

u 20r(1=d)  p—er(1-0)

SRS

1-6

el
L4(a,b)

a4l rap) lx—e

By using weighted fractional Hardy inequality (Theorem 6.35) with 14 (d —1)p > 0
we obtain

1-6

L(a,b) (6.54)
< C”xdgnguHéL?i (a,h) eruH;&,b)v

; ‘

4 U
laulliron < | == |

Lr(ab) lx™°

showing (6.51). O

6.13. Lyapunov-type inequality. Assume Q@ C RY, N > 1, be an open bounded
domain, —co < a < b < 400 and ¢(x) be real-valued, continuous function. Let us
consider the following fractional differential equation:

{pg+,mz>f+,xu<x,y> — (=B ful@.y) +a(wjulr,y) =0, in(a,b) x 2 6o

u(a,y) =u(b,y) =0, yeRV\Q,

where D}, , is the Caputo fractional derivative in the variable z and (—A,)s is the
fractional p-Laplacian in the variable y with s € (0,1) and 1 < p < oo.
By [125], we can choose the first eigenfunction of

{(_Ay>;<p1(y) = M(Qpi(y), ye, (6.56)

e1(y) =0, y e RV\ Q,

corresponding to be positive and whose eigenvalue simple and positive, A;(£2) > 0.
In this section we obtain a Lyapunov-type inequality for (6.55).

Theorem 6.38. Assume that 0 < a, f < 1 be such that 1 < a4+ <2, s € (0,1),
1 <p<ooand q(x) € C([a,b]). Then for (6.55), we have

Lo+ B) (o +28 — 1)~
(b—a)etB-1L(a+ B — 1)atB-138’

where A\1(Q2) is the first eigenvalue of (6.56).

b
[ lat@) = @i > (6.57)
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Proof. By multiplying (6.55) with ¢;(y) and integrating over €2, we get

/ D2, DF, e, y)or(y)dy / (=A,)3u(x.y)er (v)dy

T q(a) / w(e, y)er (y)dy
_D3+ :cpf—kx/glu(x?y)@l(y)dy
- [(a)ut )y

Q
T q(a) / u(, y)e1 (4)dy
— 2, DL\, / ul(e, y)e1 (4)dy
- / (=)0 () ule, y)dy

Q
T q(@) / ul(z, y)er (y)dy
—e, D2, /Q u(z, y)e1 (4)dy
WG / ule, y)or(y)dy
" /Q ul(, y)er (y)dy

=D, . Diy 20() + qr(x)v(x) =0,

where v(z) = [,u(z, y)e1(y)dy, ¢1(z) = q(z) — M\ (), from boundary condition
(6.55), we have

Finally, we get

D, Dy 20(2) + ar(@)o(z) =0, € (a,b),
{ (@) = 0. o(b) = 0. (6.58)
By [126], for the (6.58), we get

[ )= / 0(2) = M(@) s

T(a+ B)(a+28 — 1)2+28-1
T (b—a) P o+ f = 1)etim g

completing the proof. O

(6.59)

Corollary 6.39. By choosing a = =1, s =1 and p = 2, we have Theorem 2.2 in
[121] with v = 0.
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Let us consider the following eigenvalue problem in cylindrical domain:

Dg-‘r .tDaer (‘I’ y) - (—Ay)su(x,y) + VU(I’,y) =0, in (aa b) X Q;
u(a,y) =u(b,y) =0, Vye€Q, (6.60)
u(r,y) =0, yeRV\Q,
where (—A,)® is the fractional Laplacian. Denote that | - | is the Lebesgue measure.

Then, we have the following two sides estimate of the first eigenvalue of (6.60) in the
circular cylinder.

Theorem 6.40. Let 0 < a,8 < 1 be such that 1 < a+ 5 < 2, s € (0,1) and
1 <p<oo. Then we have,

(b—a)lv]+ (b —a)r(Q2) = (b —a)lv] + (b — a)\(B)
I'(a+ B)(a + 26 — 1)>+26-1 (6.61)
(b —a)*tF~Ha+ B — 1)ori=1p0"

where A\ (B) is the first eigenvalue of the eigenvalue problem (6.60) in a ball B with
€2 = [B.

Proof. By using previous theorem, assume that B be a ball and ¢(x) = v by using
Theorem A.1 in [1], we have

(b—a)lv|+ (b —a)ri(Q) = (b= a)lv| + (b - a)\(B)

/ v = M(B)ld (6.62)

T(a+ B)(a+28 — 1)o+28-1
T (b—a) P a+ B = 1)t ge

O

Theorem 6.41. Assume that 0 < o, < 1 be such that 1 < a+ <2, s € (0,1)
and 1 < p < oo. Then we have,

(b—a)lv[+ (b= a) i (Q) = (b—a)|v| + (b - a)\i(B)
T(a+ B)(a+ 28 — 1)0+28-1 (6.63)
(b—a)otP=a + f — 1)ath-155

where \1(B) is the first eigenvalue of the eigenvalue problem (6.60) in ball B with
2] = |B].

Let us consider the following fractional differential equation by the variable x:

Lou(z,y) = (=Ay)*u(z, y) + q(x)u(z,y) =0, (x,y) € (a,b) x Q,
u(a,y) = u(b,y) =0, YyeQ, (6.64)
u(z,y) =0, y eRV\Q,
where . . .
Dics Dt +Da+xDb_’m, Lt
2 2
Denote that the following functional spaces AC®?([a,b]) and ACy*([a, b]).

L, =
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Definition 6.42. For all @ € (0,1) and every 1 < p < oo, we denote by AC*?(]a, b])
the functional space defined by

AC*([a,0]) = {f : f € L'([a,b]), D, .f € L*([a,0])}. (6.65)
ACT*([a,0)) = {f : f € L'([a,B]), Dy ,f € L*([a, B])}. (6.66)
Then, we have the following Lyapunov-type inequality:

Theorem 6.43. Suppose that £ < a <1, s € (0,1), 1 <p < oo and g € C([a,b)).
Suppose that [, u(z,y)e1(y)dy € ACP*([a,b]) N ACS*([a,b]) N C([a,b]). Then for

(6.64), we get
/ lg(z) — M (Q)]dz > T(a) (b 2 )M_l (20— 1), (6.67)

—a

where A\1(Q2) is the first eigenvalue of (6.56).

Proof. The proof is similar to that of Theorem 6.38. Shortly, we have

Lov(z)+ q(z)v(z) =0, z € (a,b),
{v(a) =0, v(b) =0, (6.68)

where v(z) = [, u(z,y)e1(y)dy and ¢ (z) = gq(z) — \(Q2). By assumptions v(x) €
AC*(]a, b]) N AC’“Q([a b)) N C([a,b]) and from [127], we get
2 2a—1
/ lg(x Q)|dz > T'*(a) <b — a) (2a—1). (6.69)
Theorem 6.43 is complete. O

6.14. Hartman-Wintner-type inequality. In this section, we show Hartman-Wintner
type inequality for problem (6.55).

Theorem 6.44. Assume that 0 < o, 5 < 1 be such that 1 < a+ 3 <2, s € (0,1),
1 <p<ooandq(x) € Cla,b]). Assume that the fractional boundary value problem
(6.55) has a nontrivial continuous solution. Then, we have

b
/(b —8) (s — a)P[q(x) — A\ (Q)]Tds > T'(a+ B)(b—a)”, (6.70)
where [q(z) — A\ (Q)]T = max{q(z) — A (22),0}.
Proof By multiplying (6.55) with ¢;(y) and integrating over Q, for the function

= [y u(z,y)e1(y)dy we have problem (6.58). Problem (6.58) is equivalent to the
mtegral equation (see. [120])

o(z) = / Gz, 5)qr (s)0(s)ds,
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where
L[ @ a<s<a<h
G(z,8) = =—— (6.71)
I'o + B
@) | s e’ g <a<s <,
G(z,s) < G(s,s), for z,s € [a,b]. (6.72)
By using last fact with (6.72) for any a < z < b, we get
b
@)l < [ 166 a o)
b
< [ Gls.)lants)lol)lds
b 5
< Fat [0- 97— 0 Gl
Theorem 6.70 is proved. O

Corollary 6.45. By choosing « = =1 and s =1, p = 2 in (6.70), we have the
classical Hartman- Wintner inequality

/ (b—s)(s—a)g (s) >b—a. (6.73)

6.15. De La Vallée Poussin-type inequality. Let us consider in (a,b) x Q the
following fractional differential Dirichlet problem:

Zru(r,y) — (=8, u(z,y) + f(2)D2, Lulx,y) + q(z)u(z,y) =0,
u(a,y) =u(b,y) =0, YyeQ, (6.74)

u(z,y) =0, yeRY\Q,
where « € (0, 1]. Then, we show a de La Vallée Poussin-type inequality for (6.74).
Theorem 6.46. Assume that o € (0,1]. Then, for (6.7/), we have De La Vallée

Poussin-type inequality in the following form:
(b—a)
re-a)’

where My = max,<q<p | f(2)|, Mo = maxa<.<p [q(z) — A\ (Q)| and A\((?) is the first
eigenvalue of the (6.506).

1< M1<b — G)Z_a + M,

Proof. Similarly to Theorem 6.46, we get
v (x) + f(@)Dg, () + q(x)v(z) =0, (6.75)
with
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where
i) = [ utz ety
and
q(x) = q(x) — A\ ().
From [120, Theorem 3.1}, we have
b o \2—« b N\«
b —a <max {/a %U(sﬂds,/a %(b — s)|f(s)|ds}
b

+ [ =)= s)ls) - M@l (070

S Ml(b — a)3_a + MQ(b — a)?’,
where My = max,<,<p | f(x)], M2 = max,<.<p [¢(x) — A\ (2)].

Theorem 6.46 is complete. 0

Corollary 6.47. By choosing a« = 1, we get Theorem 2.2 in [122].

Let us consider in (a,b) x Q the following fractional differential equation with
Riemann-Liouville derivative and 1 <a <2 and 0 < g < 1:

Dg, ulz,y) — (=4, ulz,y) + f(2) DI yule,y) + q(@)ulz,y) =0,
u(a,y) =u(b,y) =0, Vye€Q, (6.77)
u(x,y) =0, ye RN\ Q,

Then let us present de La Vallée Poussin-type inequality for (6.77),

Theorem 6.48. Assume that « — > 1 with 1 < a <2 and 0 < < 1. Then, we
have

lNa—B) < Ci1 My + CyMs, (6.78)
where My = max |f(z)], My = max [q(z) — M (8)],
Cy=(b—a) ", (6.79)
and N
Cy = % (6.80)
Proof. Similarly to Theorem 6.46, we get
Dy o(x) + f(2)Dio(@) + q(x)v(z) = 0, (6.81)
with
v(a) = v(b) =0,
where
v(r) = / u(@,y)e1(y)dy
and ’

q(x) = q(x) — A\ ().
By using [120, Theorem 3.11], we have
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where
C! = max { / " By (s)ds. / NG “%z__ﬁ:;fj S)a_lds} , (6.82)
and
C! = max { / " By(s)ds, / s - a)(z_ﬁ;)(f_: i S/B_f)lﬁ) ds} , (6.83)
where
R e IO e o)
and o

Fy(s) = Fl(s)m.

Hence, we get
(b—a)"

< (b — a)O‘*'BMl -+ mMQ

OJ

Corollary 6.49. By choosing o = 2 and = 1 in Theorem 6./8, we get Theorem

Corollary 6.50. By choosing o = 2 in Theorem 6.48, we get Theorem 6./0.

6.16. Lyapunov-type inequality for a fractional differential system. In this
section we present Lyapunov-type inequality for fractional differential system. Let us
consider in (a, b) x  the following fractional differential systems:

{um@,y) = (=Ay)v(@,y) + f(2)o(z,y) =0, (6.84)
Una(2,y) — (=Ay)"u(z,y) + g(x)u(z,y) =0,
with homogeneous Dirichlet problem
u(a,y) = u(by) = v(a,y) = v(by) =0, y e,
and
u(z,y) =v(r,y) =0, yeRY\Q.
Let us show one of the main result of this section:

Theorem 6.51. Assume that that f,g > 0 and f,g € L'([a,b]). If (6.8/) has not
nontrivial solution, then we have

1<o-a(f i) - |dx) ( / oz |d:c)é. (6.55)



Proof. Suppose that

and

U(z) = /Q“<””’ Y)e1(y)dy,

Viz) = / o(z, y)er (y)dy.

Similarly with the single equation case, we have

with

and

From [70], we have

1< (b a) (/:w:c)rdac)é (f |gl<o:>|das)é

Theorem 6.51 is proved.

U'(x) = fi(x)V(z,y) =0,
V' (z) = g1(x)U(z,y) = 0,

Ula) = U(b) =0,
V(a) = V(b) =0,
filz) = f(x) = M ()

Let us consider in (a,b) x €2 the following system:

Lou(z,
LQU(.CE, y) -

— (=Ay)v(z,y) + f(z)o(z,
(=4y)"u(z,y) + g(x)ulz,

with a homogeneous Dirichlet boundary condition

u(a,y) = u(b,y) = v(a,y) =v(by) =0, y€Q,

and
where

LY =
and

Lf =

Theorem 6.52. Suppose that % <a<l,

u(z,y) = v(z,y)

Dl()x ng+m + D(Czy—i-,xDl?:,x 1

Df foJr:):_’_Daerfo’x 1

2 T2

2 T2

be a nontrivial solution of (6.87), then we have

(i )ﬁ (20— 1)}(26 — 1)T(a)0(9)

b—a

< ([ 170

=0, yeRY\Q,

—<a<l,

—<p<l.

=

([
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(6.86)

(6.87)

s <pB<1landfge L'(a,b]). Letu,v

|dx> C(6.88)
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Proof. Proof of this Theorem is similar Theorem 6.51 we obtain

{LQU(x) — fi(x)V(z,y) =0, (6.89)
Ux |

LA (z) = g1(2)U(z,y) = 0,
where
Ua) = [ et
and
Via) = [ veaaitiy
By using Corollary 5.5 in [127], we get

a+6—1
(;2.)  Ca-vies-nivere)

< ([ 170 |dx) ([ 1) - nigar) " wo0)

Theorem 6.52 is proved. O

-

6.17. Applications. In this Section we show some applications of the obtained in-
equalities and we note that u is a real-valued function.

6.17.1. Uncertainly principle. The inequality (6.17) implies the following uncertainly
principle:

Corollary 6.53. Let a > 0, u(a) =0 and DS, u € LP(a,b) with p > 1. Then for the
Caputo fractional derivative Dy of order oo € (%, 1] we have following inequality

—1 a
2 a'(b—a)
lull720p < =) D8 1oy M1l Laay, (6.91)

(7% - 7)) 7 Tl

where ¢ = 1%'

Proof. By using (6.17), we obtain

at(b—a)® 6.17) ||y
N L Py P B s
(% ~ 1) 7 I(a) ’ (6.92)
2
> HUHH(CL,b);
completing the proof. O

Remark 6.54. Also, the uncertainly principle holds for the Riemann-Liouville de-
rivative.
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6.17.2. Embedding of spaces. Let us consider the space Hj‘r‘(a,b) with a € (%, 1}
introduced in [128, 129] in the following form:

H%(a,b) := {u € L*(a,b), D, u € L*(a,d), u(a) = 0}.
If « < B, then by Poincaré-Sobolev-type inequality (6.9) we have Hf(a, b) —
H%(a,b).

6.17.3. A-priori estimate. Here, we seek a real-valued solution to the following space-
fractional diffusion problem

w(2,t) + Dy Dy u(z,t) =0, (z,t) € (a,b) x (0, 7),
{ (z,0) = uo(x), +Va: € (a,b), (6.93)

where a € (1,1], uw € L>(0,T; H%(a,b)), u; € L*(0,T; H%(a,b)) and uy € L*(a,b).
We show an a-priori estimate for this problem. Let us define

b
1) = [[ue, ) o = / fu(z, t) 2d.

Then by multiplying (6.93) by w, integrating over (a,b), and by using integration by
parts, we compute

/ab“t(x’t)“(x’”d“ / u(e, D D2, u(x, t)dz

th/ lu(z, t) 2d:L‘—I—/ 1D, u(w, t)|Pd (6.94)

ldI
D
=5 /\a+uxt|dx

By using (6.9) with p = 2 in (6.94), we get

1 d[( ) o, 9 1dI(t)  (2a—1)T2(a) [° )
= - > Ny
0 S / D u(z, t)|“de > 5 + b—a /a |u(z, t)|“dz,

(6.95)

it means ( ) < 0. That i is, I(t) is a non-decreasing function, then for ¢ > 0, we have
Ity <1 (()) Finally,
Ju(z, )2 < lluollr2(ap)-
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7. CONCLUSION

In this PhD dissertation, we develop fractional functional and geometric inequal-
ities on homogeneous Lie groups. More precisely, we develop the fractional calculus
and non-commutative analysis, i.e., we combined two big direction in mathemat-
ics. This perspective turned out to be extremely useful on both a conceptual and a
technical level. Let us review the obtained results in this dissertation:

In Chapter 3, where we study fractional functional and geometric inequalities on
homogeneous Lie groups. We obtain fractional Hardy, Sobolev, Gagliardo-Nirenberg,
Caffarelli-Kohn-Nirenberg inequalities on homogeneous Lie groups and its logarith-
mic fractional inequalities which is even new on Euclidean case. For the Riesz po-
tential (or a fractional integral), we get the Hardy-Littlewood-Sobolev inequality on
homogeneous Lie groups, which means boundedness of the Riesz operator in LP — L4
spaces. Also, we obtain the Stein-Weiss inequality for the Riesz potential. In addi-
tion, we show integer order logarithmic Sobolev-Folland-Stein inequality on stratified
Lie groups.

In Chapter 4, where we focus questions of the reverse functional inequalities. We es-
tablished reverse integral Hardy inequality on metric measure space with parameters
g <0 and p € (0,1). As consequences, we obtained integral reverse Hardy inequal-
ity with parameters ¢ < 0 and p € (0,1) on homogeneous Lie groups, hyperbolic
space and Cartan-Hadamard manifolds. In addition, we obtained integral reverse
Hardy inequality on metric measure space with parameters co < ¢ < p < 0 and
a consequences we show reverse integral reverse Hardy inequality on homogeneous
Lie groups. Then we obtain the reverse Hardy-Littlewood-Sobolev, Stein-Weiss and
improved Stein-Weiss inequalities on homogeneous Lie groups with parametres g < 0
and p € (0,1). Also, we obtain the reverse Hardy-Littlewood-Sobolev, Stein-Weiss
type and improved Stein-Weiss type inequalities with parameters co < g < p < 0,
which is even new in Euclidean settings. In addition, we obtain the reverse Hardy,
LP-Sobolev and LP- Caffarelli-Kohn-Nirenberg inequalities with the radial derivative
on homogeneous Lie groups.

In Chapter 5, where we investigate nonlinear PDE on groups by using our results.
Firstly, we obtain Lyapunov inequalities for the fractional p-sub-Laplacian equation
and systems on homogeneous Lie groups. Then, we show existence of the weak solu-
tion for the nonlinear equation with the p-sub-Laplacian on the Heisenberg and strati-
fied groups and we show existence of the weak solution for the nonlinear equation with
the fractional p-sub-Laplacian and Hardy potential on homogeneous Lie groups. Then
we discussed blow-up results for heat equation with fractional p-sub-Laplacian on ho-
mogeneous Lie groups, for heat equation with fractional sub-Laplacian on stratified
groups, viscoelastic equation, heat and wave Rockland equations on graded groups.

In Appendix, we considered one-dimensional functional inequalities on Fuclidean
case. Firstly, we obtain fractional Hardy, Poincaré type, Gagliardo-Nirenberg and
Caffarelli-Kohn-Nirenberg inequalities for the fractional order differential operators
as Caputo, Riemann-Liouville and Hadamard fractional derivatives. Also, we show
applications of these inequalities. In addition, we show Lyapunov and Hartman-
Wintner-type inequalities for a fractional partial differential equation with Dirichlet
condition, we give an application of this inequalities for the first eigenvalue and
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we show de La Vallée Poussin-type inequality for fractional elliptic boundary value
problem.
Most of results in this dissertation were published on high peer-reviewed journals.
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